Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

被引:207
作者
Chai, Bo [1 ]
Yan, Juntao [1 ]
Wang, Chunlei [1 ]
Ren, Zhandong [1 ]
Zhu, Yuchan [1 ]
机构
[1] Wuhan Polytech Univ, Sch Chem & Environm Engn, Wuhan 430023, Peoples R China
基金
中国国家自然科学基金;
关键词
Phosphorus doped g-C3N4; Photocatalytic activity; Degradation; Charge carrier separation; H-2; EVOLUTION; HYDROGEN EVOLUTION; HETEROJUNCTION PHOTOCATALYSTS; G-C3N4; NANOSHEETS; FACILE SYNTHESIS; POROUS G-C3N4; PERFORMANCE; CO2; HETEROSTRUCTURES; IRRADIATION;
D O I
10.1016/j.apsusc.2016.06.180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phosphorus doped graphitic carbon nitride (g-C3N4) was easily synthesized using ammonium hexafluorophosphate (NH4PF6) as phosphorus source, and ammonium thiocyanate (NH4SCN) as g-C3N4 precutsor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C3N4 was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C3N4 samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C3N4 had a superior photocatalytic activity than that of pristine g-C3N4, attributing to the phosphorus atoms substituting carbon atoms of g-C3N4 frameworks to result in light harvesting enhancement and delocalized IT-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C3N4. Moreover, the tests of radical scavengers demonstrated that the holes (h(+)) and superoxide radicals (O-center dot(2)-) were the main active species for the degradation of RhB. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 51 条
[1]   Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures [J].
Akple, Maxwell Selase ;
Low, Jingxiang ;
Wageh, S. ;
Al-Ghamdi, Ahmed. A. ;
Yu, Jiaguo ;
Zhang, Jun .
APPLIED SURFACE SCIENCE, 2015, 358 :196-203
[2]   Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts [J].
Bi, Guican ;
Wen, Jiuqing ;
Li, Xin ;
Liu, Wei ;
Xie, Jun ;
Fang, Yueping ;
Zhang, Weiwei .
RSC ADVANCES, 2016, 6 (37) :31497-31506
[3]   Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges [J].
Bi, Yingpu ;
Hu, Hongyan ;
Ouyang, Shuxin ;
Lu, Gongxuan ;
Cao, Junyu ;
Ye, Jinhua .
CHEMICAL COMMUNICATIONS, 2012, 48 (31) :3748-3750
[4]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[5]   Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J].
Chen, Chuncheng ;
Ma, Wanhong ;
Zhao, Jincai .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4206-4219
[6]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[7]   Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors [J].
Cui, Yanjuan ;
Huang, Jianhui ;
Fu, Xianzhi ;
Wang, Xinchen .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (07) :1396-1402
[8]   Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes [J].
Ding, Jing ;
Liu, Qianqian ;
Zhang, Zhaoyan ;
Liu, Xin ;
Zhao, Junqi ;
Cheng, Shibiao ;
Zong, Baoning ;
Dai, Wei-Lin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 165 :511-518
[9]   In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis [J].
Dong, Fan ;
Zhao, Zaiwang ;
Xiong, Ting ;
Ni, Zilin ;
Zhang, Wendong ;
Sun, Yanjuan ;
Ho, Wing-Kei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :11392-11401
[10]   Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity [J].
Faisal, M. ;
Ismail, Adel A. ;
Harraz, Farid A. ;
Al-Sayari, S. A. ;
El-Toni, Ahmed Mohamed ;
Al-Assiri, M. S. .
MATERIALS & DESIGN, 2016, 98 :223-230