Optimizing the Piezoelectric Strain in ZrO2- and HfO2-Based Incipient Ferroelectrics for Thin-Film Applications: An Ab Initio Dopant Screening Study

被引:32
作者
Falkowski, Max [1 ]
Kersch, Alfred [1 ]
机构
[1] Munich Univ Appl Sci, D-80335 Munich, Germany
关键词
hafnium oxide; zirconium oxide; thin film; piezoelectric; ferroelectric; antiferroelectric; ROBUST; OXIDE;
D O I
10.1021/acsami.0c08310
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
HfO2 and ZrO2 have increasingly drawn the interest of researchers as lead-free and silicon technology-compatible materials for ferroelectric, pyroelectric, and piezoelectric applications in thin films such as ferroelectric field-effect transistors, ferroelectric random access memories, nanoscale sensors, and energy harvesters. Owing to the environmental regulations against lead-containing electronic components, HfO2 and ZrO2 offer, along with AlN, (K,Na)NbO3- and (Bi0.5Na0.5)TiO3-based materials, an alternative to Pb(ZrxTi1-x)O-3-based materials, which are the overwhelmingly used ceramics in industry. HfO2 and ZrO2 thin films may show field-induced phase transformation from the paraelectric tetragonal to the ferroelectric orthorhombic phase, leading to a change in crystal volume and thus strain. These field-induced strains have already been measured experimentally in pure and doped systems; however, no systematic optimization of the piezoelectric activity was performed, either experimentally or theoretically. In this screening study, we calculate the ultimate size of this effect for 58 dopants depending on the oxygen supply and the defect incorporation type: substitutional or interstitial. The largest piezoelectric strain values are achieved with Yb, Li, and Na in ZrO2 and exceed 40 pm V-1 or 0.8% maximal strain, which exceeds the best experimental findings by a factor of 2. Furthermore, we discovered that Mo, W, and Hg make the polar-orthorhombic phase in the ZrO2 bulk stable under certain circumstances, which would count in favor of these systems for the ceramic crystallization process. Our work guides the development of the performance of a promising material system by rational design of the essential mechanisms so as to apply it to unforeseen applications.
引用
收藏
页码:32915 / 32924
页数:10
相关论文
共 56 条
[1]   A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction [J].
Ambriz-Vargas, Fabian ;
Kolhatkar, Gitanjali ;
Broyer, Maxime ;
Hadj-Youssef, Azza ;
Nouar, Rafik ;
Sarkissian, Andranik ;
Thomas, Reji ;
Gomez-Yanez, Carlos ;
Gauthier, Marc A. ;
Ruediger, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13262-13268
[2]  
An American National Standard, 1987, IEEE T SONICS ULTRAS
[3]   Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration [J].
Batra, Rohit ;
Tran Doan Huan ;
Rossetti, George A., Jr. ;
Ramprasad, Rampi .
CHEMISTRY OF MATERIALS, 2017, 29 (21) :9102-9109
[4]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[5]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[6]   ANALYSIS OF METHODS FOR DETERMINING ELECTROMECHANICAL COUPLING-COEFFICIENTS OF PIEZOELECTRIC ELEMENTS [J].
CHANG, SH ;
ROGACHEVA, NN ;
CHOU, CC .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1995, 42 (04) :630-640
[7]   Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si [J].
Chernikova, Anna ;
Kozodaev, Maksim ;
Markeev, Andrei ;
Negrov, Dmitrii ;
Spiridonov, Maksim ;
Zarubin, Sergei ;
Bak, Ohheum ;
Buraohain, Pratyush ;
Lu, Haidong ;
Suvorova, Elena ;
Gruverman, Alexei ;
Zenkevich, Andrei .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (11) :7232-7237
[8]   Extraordinary tunability of high-frequency devices using Hf0.3Zr0.7O2 ferroelectric at very low applied voltages [J].
Dragoman, Mircea ;
Aldrigo, Martino ;
Modreanu, Mircea ;
Dragoman, Daniela .
APPLIED PHYSICS LETTERS, 2017, 110 (10)
[9]   Properties of Dopants in HfOx for Improving the Performance of Nonvolatile Memory [J].
Duncan, Dan ;
Magyari-Kope, Blanka ;
Nishi, Yoshio .
PHYSICAL REVIEW APPLIED, 2017, 7 (03)
[10]   Unexpectedly large energy variations from dopant interactions in ferroelectric HfO2 from high-throughput ab initio calculations [J].
Falkowski, Max ;
Kuenneth, Christopher ;
Materlik, Robin ;
Kersch, Alfred .
NPJ COMPUTATIONAL MATERIALS, 2018, 4