Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan

被引:66
作者
Chen, Shuang [1 ]
Brunski, Eric W. [1 ]
Potter, S. Steven [1 ]
Dexheimer, Phillip J. [2 ]
Salomonis, Nathan [2 ]
Aronow, Bruce J. [2 ]
Hong, Christian I. [3 ]
Zhang, Tongli [3 ]
Kopan, Raphael [1 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Dev Biol, Cincinnati, OH 45220 USA
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45220 USA
[3] Univ Cincinnati, Coll Med, Dept Mol & Cellular Physiol, Cincinnati, OH 45267 USA
关键词
HEMATOPOIETIC STEM-CELLS; PRINCIPAL COMPONENT ANALYSIS; MAMMALIAN KIDNEY DEVELOPMENT; DEVELOPING MOUSE KIDNEY; BRANCHING MORPHOGENESIS; GENE-EXPRESSION; NUMBER; DIFFERENTIATION; HYPERTENSION; MICE;
D O I
10.1016/j.devcel.2015.09.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During fetal development, nephrons of the metanephric kidney form from a mesenchynnal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 60 条
[1]   Architectural patterns in branching morphogenesis in the kidney [J].
Al-Awqati, Q ;
Goldberg, MR .
KIDNEY INTERNATIONAL, 1998, 54 (06) :1832-1842
[2]  
Barak H., 2011, COLD SPRING HARB PRO, V2011, pt5558
[3]   FGF9 and FGF20 Maintain the Stemness of Nephron Progenitors in Mice and Man [J].
Barak, Hila ;
Huh, Sung-Ho ;
Chen, Shuang ;
Jeanpierre, Cecile ;
Martinovic, Jelena ;
Parisot, Melanie ;
Bole-Feysot, Christine ;
Nitschke, Patrick ;
Salomon, Remi ;
Antignac, Corinne ;
Ornitz, David M. ;
Kopan, Raphael .
DEVELOPMENTAL CELL, 2012, 22 (06) :1191-1207
[4]   AGE-DEPENDENT SPECIFICATION OF THE CORTICOCORTICAL CONNECTIONS OF CEREBRAL GRAFTS [J].
BARBE, MF ;
LEVITT, P .
JOURNAL OF NEUROSCIENCE, 1995, 15 (03) :1819-1834
[5]  
BARBE MF, 1991, J NEUROSCI, V11, P519
[6]   Growth in utero and blood pressure levels in the next generation [J].
Barker, DJP ;
Shiell, AW ;
Barker, ME ;
Law, CM .
JOURNAL OF HYPERTENSION, 2000, 18 (07) :843-846
[7]   Human nephron number: implications for health and disease [J].
Bertram, John F. ;
Douglas-Denton, Rebecca N. ;
Diouf, Boucar ;
Hughson, Michael D. ;
Hoy, Wendy E. .
PEDIATRIC NEPHROLOGY, 2011, 26 (09) :1529-1533
[8]   The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling [J].
Böttcher, RT ;
Pollet, N ;
Delius, H ;
Niehrs, C .
NATURE CELL BIOLOGY, 2004, 6 (01) :38-U8
[9]   Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia [J].
Boyle, Scott ;
Misfeldt, Andrew ;
Chandler, Kelly J. ;
Deal, Karen K. ;
Southard-Smith, E. Michelle ;
Mortlock, Douglas P. ;
Baldwin, H. Scott ;
de Caestecker, Mark .
DEVELOPMENTAL BIOLOGY, 2008, 313 (01) :234-245
[10]   A Synthetic Niche for Nephron Progenitor Cells [J].
Brown, Aaron C. ;
Muthukrishnan, Deepthi ;
Oxburgh, Leif .
DEVELOPMENTAL CELL, 2015, 34 (02) :229-241