Light waveguiding in bioinspired peptide nanostructures

被引:9
作者
Apter, Boris [1 ]
Lapshina, Nadezda [2 ]
Handelman, Amir [1 ]
Rosenman, Gil [2 ]
机构
[1] Holon Inst Technol, Fac Engn, Holon, Israel
[2] Tel Aviv Univ, Sch Elect Engn, Tel Aviv, Israel
关键词
optical absorption; passive and active peptide optical waveguides; peptide nanophotonics; refolding of peptide secondary structure; requirements to peptide waveguiding materials; visible fluorescence; PROTEIN AMYLOIDS; TRANSITION; MOLECULES;
D O I
10.1002/psc.3164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Basic optical properties of bioinspired peptide nanostructures are deeply modified by thermally mediated refolding of peptide secondary structure from alpha-helical to beta-sheet. This conformational transition is followed by the appearance in the beta-sheet structures of a wideband optical absorption and fluorescence in the visible region. We demonstrate that a new biophotonic effect of optical waveguiding recently observed in peptide/protein nanoensembles is a structure-sensitive bimodal phenomenon. In the primary alpha-helical structure input, light propagates via optical transmission window demonstrating conventional passive waveguiding, based on classical optics. In the beta-sheet structure, fluorescent (active) light waveguiding is revealed. The latter can be attributed to completely different physical mechanism of exciton-polariton propagation, characterized by high effective refractive index, and can be observed in nanoscale fibers below diffraction limit. It has been shown that peptide material requirements for passive and active waveguiding are dissimilar. Original biocompatibility and biodegradability indicate high potential future applications of these bioinspired waveguiding materials in precise photobiomedicine towards advanced highly selective bioimaging, photon diagnostics, and optogenetics.
引用
收藏
页数:8
相关论文
共 61 条
[1]  
Agrawal G. P., 2002, FIBER OPTIC COMMUNIC
[2]   Self-assembled bioinspired quantum dots: Optical properties [J].
Amdursky, N. ;
Molotskii, M. ;
Gazit, E. ;
Rosenman, G. .
APPLIED PHYSICS LETTERS, 2009, 94 (26)
[3]   Structural Transition in Peptide Nanotubes [J].
Amdursky, Nadav ;
Beker, Peter ;
Koren, Itai ;
Bank-Srour, Becky ;
Mishina, Elena ;
Semin, Sergey ;
Rasing, Theo ;
Rosenberg, Yuri ;
Barkay, Zahava ;
Gazit, Ehud ;
Rosenman, Gil .
BIOMACROMOLECULES, 2011, 12 (04) :1349-1354
[4]   Elementary Building Blocks of Self-Assembled Peptide Nanotubes [J].
Amdursky, Nadav ;
Molotskii, Michel ;
Gazit, Ehud ;
Rosenman, Gil .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15632-15636
[5]   Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes [J].
Amdursky, Nadav ;
Molotskii, Michel ;
Aronov, Daniel ;
Adler-Abramovich, Lihi ;
Gazit, Ehud ;
Rosenman, Gil .
NANO LETTERS, 2009, 9 (09) :3111-3115
[6]  
[Anonymous], 1979, HDB SENSORY PHYSL
[7]   Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips [J].
Apter, Boris ;
Lapshina, Nadezda ;
Handelman, Amir ;
Fainberg, Boris D. ;
Rosenman, Gil .
SMALL, 2018, 14 (34)
[8]   Nanowire photonic circuit elements [J].
Barrelet, CJ ;
Greytak, AB ;
Lieber, CM .
NANO LETTERS, 2004, 4 (10) :1981-1985
[9]  
Broude V. L., 1985, SPECTROSCOPY MOL EXC
[10]   Protein amyloids develop an intrinsic fluorescence signature during aggregation [J].
Chan, Fiona T. S. ;
Schierle, Gabriele S. Kaminski ;
Kumita, Janet R. ;
Bertoncini, Carlos W. ;
Dobson, Christopher M. ;
Kaminski, Clemens F. .
ANALYST, 2013, 138 (07) :2156-2162