Original Fabrication and characterization of FAST sintered micro/nano boron carbide composites with enhanced fracture toughness

被引:20
作者
Dai, Jingyao [1 ]
Singh, Jogender [2 ]
Yamamoto, Namiko [1 ]
机构
[1] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA
关键词
Boron carbide; Fracture toughness; Hierarchical microstructure; Field assisted sintering; MECHANICAL-PROPERTIES; PARTICLE-SIZE; MICROSTRUCTURE; HARDNESS; DEFORMATION; CERAMICS; CARBON; TIB2; CONSOLIDATION; SCHERRER;
D O I
10.1016/j.jeurceramsoc.2020.05.074
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Toughening of boron carbide (B4C) without hardness degradation, was achieved by hierarchical structures consisting of B4C micro-grains, titanium diboride (TiB2) grains, and graphitic phases along B4C grain boundaries. Such hierarchical structures were uniquely achieved by co-sintering of B4C micro-powder and carbon-rich B4C nano-powder, in situ formation of TiB2, and by utilizing the short sintering time of field-assisted sintering technology. Toughening mechanisms observed after micro-indentation include crack deflection and delamination of graphite platelets, micro-crack toughening and crack deflection/bridging by TiB2 grains. Fracture toughness enhancement was achieved while maintaining hardness: 4.65 +/- 0.49 MPa m(1/2) fracture toughness and 31.88 +/- 1.85 GPa hardness for a micro/nano B4C-TiB2 composite (15 vol% TiB2 and 15 vol% B4C nano powders) vs. 2.98 +/- 0.24 MPa m(1/2) and 32.46 +/- 1.67 GPa for a reference micro B4C sample. In future, macro scale mechanical testing will be conducted to further evaluate how these micro-scale hierarchical structures can be translated to macro-scale mechanical properties.
引用
收藏
页码:5272 / 5285
页数:14
相关论文
共 63 条
[21]   INHIBITION OF GRAIN-GROWTH BY 2ND-PHASE PARTICLES [J].
HILLERT, M .
ACTA METALLURGICA, 1988, 36 (12) :3177-3181
[22]   In situ synthesis and densification of submicrometer-grained B4C-TiB2 composites by pulsed electric current sintering [J].
Huang, S. G. ;
Vanmeensel, K. ;
Van der Biest, O. ;
Vleugels, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2011, 31 (04) :637-644
[23]   Microstructure and mechanical properties of pulsed electric current sintered B4C-TiB2 composites [J].
Huang, S. G. ;
Vanmeensel, K. ;
Malek, O. J. A. ;
Van der Biest, O. ;
Vleugels, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03) :1302-1309
[24]   Microstructure, mechanical and thermal properties of B4C/CNT composites with Al additive [J].
Kobayashi, Tomohiro ;
Yoshida, Katsumi ;
Yano, Toyohiko .
JOURNAL OF NUCLEAR MATERIALS, 2013, 440 (1-3) :524-529
[25]   Production of TiB2 from a precursor containing carbon coated TiO2 and B4C [J].
Koc, R ;
Hodge, DB .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (08) :667-669
[26]   Mechanical properties of boron carbide plus graphene platelet composites [J].
Kovalcikova, A. ;
Sedlak, R. ;
Rutkowski, P. ;
Dusza, J. .
CERAMICS INTERNATIONAL, 2016, 42 (01) :2094-2098
[27]   SCHERRER AFTER 60 YEARS - SURVEY AND SOME NEW RESULTS IN DETERMINATION OF CRYSTALLITE SIZE [J].
LANGFORD, JI ;
WILSON, AJC .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1978, 11 (APR) :102-113
[28]  
Lawn B.R., 1993, FRACTURE BRITTLE SOL, V2nd, P378, DOI [DOI 10.1017/CB09780511623127, 10. 1017/CBO9780511623127]
[29]  
Lee H, 2002, J AM CERAM SOC, V85, P1291
[30]   Reduced-graphene-oxide-reinforced boron carbide ceramics fabricated by spark plasma sintering from powder mixtures obtained by heterogeneous co-precipitation [J].
Li, Ming ;
Wang, Weimin ;
He, Qianglong ;
Wang, Aiyang ;
Hu, Lanxin ;
Fu, Zhengyi .
CERAMICS INTERNATIONAL, 2019, 45 (13) :16496-16503