BOUND ON THE NUMBER OF NEGATIVE EIGENVALUES OF TWO-DIMENSIONAL SCHRODINGER OPERATORS ON DOMAINS

被引:3
作者
Frank, R. L. [1 ,2 ]
Laptev, A. [3 ,4 ,5 ]
机构
[1] Ludwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[4] Inst Mittag Leffler, Auravagen 17, S-18260 Djursholm, Sweden
[5] Siberian Fed Univ, Krasnoyarsk, Russia
基金
美国国家科学基金会;
关键词
Schrodinger operator; Dirichlet Laplacian; Neumann Laplacian; Trudinger inequality; DISCRETE SPECTRUM; STATES;
D O I
10.1090/spmj/1559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fundamental result of Solomyak says that the number of negative eigenvalues of a Schriidinger operator on a two-dimensional domain is bounded from above by a constant times a certain Orlicz norm of the potential. Here it is shown that in the case of Dirichlet boundary conditions the constant in this bound can be chosen independently of the domain.
引用
收藏
页码:573 / 589
页数:17
相关论文
共 21 条
[1]  
Birman MS, 1996, COMMUN PUR APPL MATH, V49, P967
[2]  
De Guzman M., 1975, Lecture Notes in Mathematics, V481, DOI 10.1007/BFb0081986
[3]   Negative Eigenvalues of Two-Dimensional Schrodinger Operators [J].
Grigor'yan, Alexander ;
Nadirashvili, Nikolai .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :975-1028
[4]   Bound states in n dimensions (especially n=1 and n=2) [J].
Khuri, NN ;
Martin, A ;
Wu, TT .
FEW-BODY SYSTEMS, 2002, 31 (2-4) :83-89
[5]  
Krasnoselskii M. A., 1958, CONVEX FUNCTION ORLI
[6]   On the Negative Spectrum of the Two-Dimensional Schrodinger Operator with Radial Potential [J].
Laptev, A. ;
Solomyak, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (01) :229-241
[7]   On spectral estimates for two-dimensional Schrodinger operators [J].
Laptev, Ari ;
Solomyak, Michael .
JOURNAL OF SPECTRAL THEORY, 2013, 3 (04) :505-515
[8]  
Molchanov S., 2012, J MATH SCI, V65, P77, DOI [10.1007/s10958-012-0877-1, DOI 10.1007/S10958-012-0877-1]
[9]   A PROOF OF TRUDINGER INEQUALITY AND ITS APPLICATION TO NONLINEAR SCHRODINGER-EQUATIONS [J].
OGAWA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (09) :765-769
[10]  
POKHOZHAEV SI, 1965, P C SCI TECHN MOSC P, P158