Quantum and classical areas of black hole thermodynamics

被引:1
作者
Ghosh, A. [1 ]
Mitra, P. [1 ]
机构
[1] Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India
关键词
black hole; entropy; loop quantum gravity; ENTROPY; GEOMETRY;
D O I
10.1088/0264-9381/32/16/165006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most calculations of black hole entropy in loop quantum gravity indicate a term proportional to the area eigenvalue A with a correction involving the logarithm of A. This violates the additivity of the entropy. An entropy proportional to A, with a correction term involving the logarithm of the classical area k, which is consistent with the additivity of entropy, is derived in both U(1) and SU(2) formulations.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1999, Adv. Theor. Math. Phys, DOI DOI 10.4310/ATMP.1999.V3.N3.A1
[2]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[3]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[4]   Quantum geometry and microscopic black hole entropy [J].
Corichi, Alejandro ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (01) :243-251
[5]   New holographic entropy bound from quantum geometry [J].
Das, S ;
Kaul, RK ;
Majumdar, P .
PHYSICAL REVIEW D, 2001, 63 (04)
[6]   The SU(2) black hole entropy revisited [J].
Engle, J. ;
Noui, K. ;
Perez, A. ;
Pranzetti, D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05)
[7]   Log correction to the black hole area law [J].
Ghosh, A ;
Mitra, P .
PHYSICAL REVIEW D, 2005, 71 (02) :027502-1
[8]   An improved estimate of black hole entropy in the quantum geometry approach [J].
Ghosh, A ;
Mitra, P .
PHYSICS LETTERS B, 2005, 616 (1-2) :114-117
[9]   Absence of log correction in entropy of large black holes [J].
Ghosh, A. ;
Mitra, P. .
PHYSICS LETTERS B, 2014, 734 :49-51
[10]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220