Density estimation in an infinite dimensional space: Application to diffusion processes

被引:16
作者
Dabo-Niang, S [1 ]
机构
[1] CREST, INSEE, Stat Lab, F-92245 Malakoff, France
关键词
D O I
10.1016/S1631-073X(02)02247-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note presents a nonparametric density function estimator in all infinite dimensional space, We consider two estimators of the density. Asymptotic results are stated. Finally we give a rate of convergence in the case of a diffusion process's density relative to a Wiener's measure. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1997, FUNCTIONAL DATA ANAL
[2]  
BERLINET A, 2001, DERIVEE MESURES ESPA
[3]  
Bosq D., 2012, Linear Processes in Function Space: Theory and Applications, V149
[4]   Transformations of Wiener integrals under translations [J].
Cameron, RH ;
Martin, WT .
ANNALS OF MATHEMATICS, 1944, 45 :386-396
[5]  
DABONIANG S, 2001, DENSITY ESTIMATION F
[6]   Fractal dimensionality and regression estimation in semi-normed vectorial spaces [J].
Ferraty, F ;
Vieu, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :139-142
[7]  
LIPSTER RS, 1972, IZV AKAD NAUK SSSR M, V36
[8]  
*STAPH, 2000, GROUP TRAV STAPH STA
[9]  
*STAPH, 2001, GROUP TRAV STAPH STA
[10]  
WERTZ W, 1988, LECT NOTES MATH, V8, P290