Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

被引:6
作者
Alias, Mohd Sharizal [1 ]
Liao, Hsien-Yu [1 ]
Ng, Tien Khee [1 ]
Ooi, Boon Siew [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Photon Lab, CEMSE, Thuwal 239556900, Saudi Arabia
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2015年 / 33卷 / 06期
关键词
Refractive index - Structural optimization - Conducting polymers - Fabrication - Plastic coatings - Reflection - Nanotechnology;
D O I
10.1116/1.4929152
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials. (C) 2015 Author(s).
引用
收藏
页数:7
相关论文
共 27 条
[1]   1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL [J].
Ansbaek, Thor ;
Chung, Il-Sug ;
Semenova, Elizaveta S. ;
Yvind, Kresten .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (04) :365-367
[2]   Use and limitations of electron flood gun control of surface potential during XPS: two non homogeneous sample types [J].
Baer, DR ;
Engelhard, MH ;
Gaspar, DJ ;
Lea, AS ;
Windisch, CF .
SURFACE AND INTERFACE ANALYSIS, 2002, 33 (10-11) :781-790
[3]   High-contrast gratings for integrated optoelectronics [J].
Chang-Hasnain, Connie J. ;
Yang, Weijian .
ADVANCES IN OPTICS AND PHOTONICS, 2012, 4 (03) :379-440
[4]   Optimized sub-wavelength grating mirror design for mid-infrared wavelength range [J].
Chevallier, C. ;
Fressengeas, N. ;
Genty, F. ;
Jacquet, J. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (04) :1139-1144
[5]   Reduction of facet reflectivity of quantum-cascade lasers with subwavelength gratings [J].
Dirisu, Afusat O. ;
Silva, Grace ;
Liu, Zhijun ;
Gmachl, Claire F. ;
Towner, Fred J. ;
Bruno, John ;
Sivco, Deborah L. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (2-4) :221-223
[6]   Polythiophene-based charge dissipation layer for electron beam lithography of zinc oxide and gallium nitride [J].
Dylewicz, R. ;
Lis, S. ;
De La Rue, R. M. ;
Rahman, F. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (04) :817-822
[7]   Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector [J].
Foley, Justin M. ;
Itsuno, Anne M. ;
Das, Tanya ;
Velicu, Silviu ;
Phillips, Jaimie D. .
OPTICS LETTERS, 2012, 37 (09) :1523-1525
[8]   Control of surface charge for high-fidelity nanostructuring of materials [J].
Gervinskas, Gediminas ;
Seniutinas, Gediminas ;
Juodkazis, Saulius .
LASER & PHOTONICS REVIEWS, 2013, 7 (06) :1049-1053
[9]   Continuously Tunable, Polarization Stable SWG MEMS VCSELs at 1.55 μm [J].
Gruendl, Tobias ;
Zogal, Karolina ;
Debernardi, Pierluigi ;
Mueller, Michael ;
Grasse, Christian ;
Geiger, Kathrin ;
Meyer, Ralf ;
Boehm, Gerhard ;
Amann, Markus-Christian ;
Kueppers, Franko ;
Meissner, Peter .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (09) :841-843
[10]  
Hasnain C. J. C., 2009, IEEE J SEL TOP QUANT, V15, P869