Multi-depth Graph Convolutional Networks for Fake News Detection

被引:19
作者
Hu, Guoyong [1 ]
Ding, Ye [2 ]
Qi, Shuhan [1 ]
Wang, Xuan [1 ]
Liao, Qing [1 ,3 ]
机构
[1] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
[2] Dongguan Univ Technol, Dongguan, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
来源
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I | 2019年 / 11838卷
基金
中国国家自然科学基金;
关键词
Fake news detection; Graph Convolutional Networks; Graph embedding;
D O I
10.1007/978-3-030-32233-5_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fake news arouses great concern owing to its political and social impacts in recent years. One of the significant challenges of fake news detection is to automatically identify fake news based on limited information. Existing works show that only considering news content and its linguistic features cannot achieve satisfactory performance when the news is short. To improve detection performance with limited information, we focus on incorporating the similarity of news to discriminate different degrees of fakeness. Specifically, we propose a multi-depth graph convolutional networks framework (M-GCN) to (1) acquire the representation of each news node via graph embedding; and (2) use multi-depth GCN blocks to capture multi-scale information of neighbours and combine them by attention mechanism. Experiment results on one of the largest real-world public fake news dataset LIAR demonstrate that the proposed M-GCN outperforms the latest five methods.
引用
收藏
页码:698 / 710
页数:13
相关论文
共 29 条
[1]   Social Media and Fake News in the 2016 Election [J].
Allcott, Hunt ;
Gentzkow, Matthew .
JOURNAL OF ECONOMIC PERSPECTIVES, 2017, 31 (02) :211-235
[2]  
Bruna J., 2014, INT C LEARNING REPRE
[3]  
Castillo C., 2011, P 20 INT C WORLD WID, DOI DOI 10.1145/1963405.1963500
[4]  
Defferrard M., 2016, P ADV NEUR INF PROC, P3844
[5]  
Feng S, 2012, P 50 ANN M ASS COMP, V2, P171, DOI DOI 10.5555/2390665.2390708
[6]  
Gottipati Swapna, 2013, Social Informatics. 5th International Conference, SocInfo 2013. Proceedings: LNCS 8238, P177, DOI 10.1007/978-3-319-03260-3_16
[7]   node2vec: Scalable Feature Learning for Networks [J].
Grover, Aditya ;
Leskovec, Jure .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :855-864
[8]  
Kai Shu, 2017, ACM SIGKDD Explorations Newsletter, V19, P22, DOI 10.1145/3137597.3137600
[9]  
Karimi H., 2018, P 27 INT C COMP LING, P1546
[10]  
Liang B, 2015, INT CONF SOFTW ENG, P894, DOI 10.1109/ICSESS.2015.7339198