Alkaline Post-Treatment of Cd(II)-Glutathione Coordination Polymers: Toward Green Synthesis of Water-Soluble and Cytocompatible CdS Quantum Dots with Tunable Optical Properties

被引:67
作者
Huang, Pengcheng [1 ]
Jiang, Qin [1 ]
Yu, Ping [1 ]
Yang, Lifen [1 ]
Mao, Lanqun [1 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, Key Lab Analyt Chem Living Biosyst, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
CdS quantum dots; coordination polymers; green synthesis; glutathione; water solubility; cytocompatibility; ONE-POT SYNTHESIS; AQUEOUS SYNTHESIS; NANOPARTICLES; METAL; NANOCRYSTALS; NANORODS; CADMIUM; CDTE; CONJUGATION; GLUTATHIONE;
D O I
10.1021/am401082n
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we demonstrate a facile and environmentally friendly method for the synthesis of glutathione (GSH)-capped water-soluble CdS quantum dots (QDs) with a high cytocompatibility and a tunable optical property based on alkaline post-treatment of Cd-GSH coordination polymers (CPs). Cd-GSH CPs are synthesized with the coordination reaction of Cd2+ with GSH at different pH values, and the CdS QDs are then formed by adding NaOH to the aqueous dispersion of the Cd-GSH CPs to break the coordination interaction between Cd2+ and GSH with the release of sulfur. The particle size and optical property of the as-formed CdS QDs are found to be easily tailored by simply,adjusting the starting pH values of GSH solutions used for the formation of Cd-GSH CPs, in which the wavelengths of trap-state emission of the QDs red-shift with an increase in the sizes of the QDs that is caused by an increase in the starting pH values of GSH solutions. In addition, the use of GSH as the capping reagent eventually endows the as-formed CdS QPs with enhanced water solubility and good cytocompatibility, as demonstrated with HeLa cells. The method demonstrated here is advantageous in that the cadmium precursor and the sulfur source are nontoxic and easily available, and the size, optical properties, water solubility, and cytocompatibilty of the as-formed CdS QDs are simply achieved and experimentally regulated. This study offers a new and green synthetic route to water-soluble and cytocompatible Cds QDs with tunable optical properties.
引用
收藏
页码:5239 / 5246
页数:8
相关论文
共 60 条
[1]   Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Mandal, D ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (41) :12108-12109
[2]   Band gap engineering of CdTe nanocrystals through chemical surface modification [J].
Akamatsu, K ;
Tsuruoka, T ;
Nawafune, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (06) :1634-1635
[3]   Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles [J].
Barglik-Chory, C ;
Buchold, D ;
Schmitt, M ;
Kiefer, W ;
Heske, C ;
Kumpf, C ;
Fuchs, O ;
Weinhardt, L ;
Stahl, A ;
Umbach, E ;
Lentze, M ;
Geurts, J ;
Müller, G .
CHEMICAL PHYSICS LETTERS, 2003, 379 (5-6) :443-451
[4]   Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J].
Barrelet, CJ ;
Wu, Y ;
Bell, DC ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) :11498-11499
[5]   One-pot synthesis of high-quality zinc-blende CdS nanocrystals [J].
Cao, YC ;
Wang, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14336-14337
[6]   Luminescent CdS quantum dots as selective ion probes [J].
Chen, YF ;
Rosenzweig, Z .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :5132-5138
[7]   Growth-Controlled Formation of Porous Coordination Polymer Particles [J].
Cho, Won ;
Lee, Hee Jung ;
Oh, Moonhyun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (50) :16943-16946
[8]   Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates [J].
Duxin, N ;
Liu, FT ;
Vali, H ;
Eisenberg, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (28) :10063-10069
[9]   NUCLEAR MAGNETIC-RESONANCE STUDIES OF SOLUTION CHEMISTRY OF METAL-COMPLEXES .9. BINDING OF CADMIUM, ZINC, LEAD, AND MERCURY BY GLUTATHIONE [J].
FUHR, BJ ;
RABENSTEIN, DL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (21) :6944-6950
[10]   Protein structural changes induced by glutathione-coated CdS quantum dots as revealed by Trp phosphorescence [J].
Gabellieri, E. ;
Cioni, P. ;
Balestreri, E. ;
Morelli, E. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 (11) :1237-1245