Explicit approximate controllability of the Schrodinger equation with a polarizability term

被引:2
|
作者
Morancey, Morgan [1 ,2 ]
机构
[1] ENS Cachan, CMLA UMR 8536, F-94235 Cachan, France
[2] Ecole Polytech, CMLS UMR 7640, F-91128 Palaiseau, France
关键词
Approximate controllability; Schrodinger equation; Polarizability; Oscillating controls; Averaging; Feedback stabilization; LaSalle invariance principle; QUANTUM PARTICLE; STABILIZATION;
D O I
10.1007/s00498-012-0102-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a controlled Schrodinger equation with a dipolar and a polarizability term, used when the dipolar approximation is not valid. The control is the amplitude of the external electric field, it acts nonlinearly on the state. We extend in this infinite dimensional framework previous techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in finite dimension. We consider a highly oscillating control and prove the semi-global weak stabilization of the averaged system using a Lyapunov function introduced by Nersesyan. Then it is proved that the solutions of the Schrodinger equation and of the averaged equation stay close on every finite time horizon provided that the control is oscillating enough. Combining these two results, we get approximate controllability to the ground state for the polarizability system with explicit controls. Numerical simulations are presented to illustrate those theoretical results.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 50 条
  • [41] EXPLICIT FORMULAS FOR SOLUTIONS OF SCHRODINGER NONLINEAR EQUATION
    ITS, AR
    KOTLJAROV, VP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (11): : 965 - 968
  • [42] Explicit breather solution of the nonlinear Schrodinger equation
    Conte, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 209 (01) : 1357 - 1366
  • [43] Explicit Symplectic Methods for the Nonlinear Schrodinger Equation
    Guan, Hua
    Jiao, Yandong
    Liu, Ju
    Tang, Yifa
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (03) : 639 - 654
  • [44] Global exact controllability in infinite time of Schrodinger equation
    Nersesyan, Vahagn
    Nersisyan, Hayk
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (04): : 295 - 317
  • [45] DISPERSION AND CONTROLLABILITY FOR THE SCHRODINGER EQUATION ON NEGATIVELY CURVED MANIFOLDS
    Anantharaman, Nalini
    Riviere, Gabriel
    ANALYSIS & PDE, 2012, 5 (02): : 313 - 338
  • [46] Local controllability of a 1-D Schrodinger equation
    Beauchard, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 851 - 956
  • [47] EXACT BOUNDARY CONTROLLABILITY AND STABILIZABILITY FOR THE SCHRODINGER-EQUATION
    MACHTYNGIER, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (12): : 801 - 806
  • [48] Controllability in projection of the simple spectrum bilinear Schrodinger equation
    Caponigro, Marco
    Sigalotti, Mario
    IFAC PAPERSONLINE, 2017, 50 (01): : 5592 - 5597
  • [49] Controllability of the nonlinear Schrodinger equation in the vicinity of the ground state
    Lange, H.
    Teismann, H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (13) : 1483 - 1505
  • [50] GLOBAL CONTROLLABILITY AND STABILIZATION FOR THE NONLINEAR SCHRODINGER EQUATION ON AN INTERVAL
    Laurent, Camille
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (02) : 356 - 379