Challenges and solutions for high-efficiency quantum dot-based LEDs

被引:65
作者
Bozyigit, Deniz [1 ]
Wood, Vanessa [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
LIGHT-EMITTING DEVICES; NANOCRYSTALS; ELECTROLUMINESCENCE; LUMINESCENCE; DIODES;
D O I
10.1557/mrs.2013.180
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Colloidal quantum dots (QDs) hold great promise as electrically excited emitters in light-emitting diodes (LEDs) for solid-state lighting and display applications, as highlighted recently by the demonstration of a red-emitting QD-LED with efficiency on par with that of commercialized organic LED technologies. In the past five years, important advances have been made in the synthesis of QD materials, the understanding of QD physics, and the integration of QDs into solid-state devices. Insights from this progress can be leveraged to develop a set of guidelines to direct QD-LED innovation. This article reviews the fundamental causes of inefficiency in QD-LEDs understood to date and proposes potential solutions. In particular, we emphasize the challenge in developing QD emitters that exhibit high luminescent quantum yields in the combined presence of charge carriers and electric fields that appear during traditional LED operation. To address this challenge, we suggest possible QD chemistries and active layer designs as well as novel device architectures and modes of QD-LED operation. These recommendations serve as examples of the type of innovations needed to drive development and commercialization of high-performance QD-LEDs.
引用
收藏
页码:731 / 736
页数:6
相关论文
共 37 条
[1]   Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications [J].
Aldakov, Dmitry ;
Lefrancois, Aurelie ;
Reiss, Peter .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (24) :3756-3776
[2]   Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots [J].
Anikeeva, P. O. ;
Madigan, C. F. ;
Halpert, J. E. ;
Bawendi, M. G. ;
Bulovic, V. .
PHYSICAL REVIEW B, 2008, 78 (08)
[3]   Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2009, 9 (07) :2532-2536
[4]   Origins of Low Quantum Efficiencies in Quantum Dot LEDs [J].
Bozyigit, Deniz ;
Yarema, Olesya ;
Wood, Vanessa .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (24) :3024-3029
[5]   Study of field driven electroluminescence in colloidal quantum dot solids [J].
Bozyigit, Deniz ;
Wood, Vanessa ;
Shirasaki, Yasuhiro ;
Bulovic, Vladimir .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)
[6]   Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].
Caruge, J. M. ;
Halpert, J. E. ;
Wood, V. ;
Bulovic, V. ;
Bawendi, M. G. .
NATURE PHOTONICS, 2008, 2 (04) :247-250
[7]   Giant multishell CdSe nanocrystal quantum dots with suppressed blinking [J].
Chen, Yongfen ;
Vela, Javier ;
Htoon, Han ;
Casson, Joanna L. ;
Werder, Donald J. ;
Bussian, David A. ;
Klimov, Victor I. ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5026-5027
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]   Quantum-confined stark effect in single CdSe nanocrystallite quantum dots [J].
Empedocles, SA ;
Bawendi, MG .
SCIENCE, 1997, 278 (5346) :2114-2117
[10]   Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots [J].
Galland, Christophe ;
Ghosh, Yagnaseni ;
Steinbrueck, Andrea ;
Sykora, Milan ;
Hollingsworth, Jennifer A. ;
Klimov, Victor I. ;
Htoon, Han .
NATURE, 2011, 479 (7372) :203-U75