The transformation of graphite electrode materials in lithium-ion batteries after cycling

被引:47
作者
Dai, Kehua [1 ,2 ]
Wang, Zhihui [1 ,3 ]
Ai, Guo [1 ]
Zhao, Hui [1 ]
Yuan, Wen [1 ]
Song, Xiangyun [1 ]
Battaglia, Vincent [1 ]
Sun, Chengdong [4 ]
Wu, Kai [4 ]
Liu, Gao [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China
[3] Zeptor Corp, Menlo Pk, CA 94025 USA
[4] Ningde Amperex Technol Co Ltd, Res Inst, Ningde, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode; Graphite; Poly(vinylidene fluoride); Stability; Volume expansion; ELECTROCHEMICAL IMPEDANCE; CONDUCTIVE POLYMER; CAPACITY FADE; ANODE; PERFORMANCE; CATHODE; DENSITY;
D O I
10.1016/j.jpowsour.2015.08.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To reveal how graphite electrodes change with cycling in lithium-ion batteries, electrochemical experiments involving charge discharge cycling at different current density conditions are performed on commercial pouch cells and the graphite electrodes after cycling. This research shows that the polyvinylidene fluoride (PVDF) binder does not degrade, confirmed by the stable molecular weight after different cycling conditions. Particle size analysis results indicate that the diameter of graphite particles after cycling is similar to 10% larger than that of the graphite before cycling, which results in a similar to 30% volume expansion after cycling. For the cells cycled at the same current density, the graphite particle size increases with cycle time. For the cells with the same cycle numbers, the graphite particle size is larger in the cells cycled at lower current density. X-ray diffraction characterization shows that the d-spacings of the graphite particles in all the cells at different cycling conditions are identical. These results suggest that the graphite particle size increase associated with cycling may arise specifically when primary particles inflate the secondary particle size, leading to dramatic volume expansion of graphite secondary particles. Published by Elsevier B.V.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 30 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[3]   Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells [J].
Bloom, I ;
Jones, SA ;
Battaglia, VS ;
Henriksen, GL ;
Christophersen, JP ;
Wright, RB ;
Ho, CD ;
Belt, JR ;
Motloch, CG .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :538-550
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Failure mode and effects analysis using grey theory [J].
Chang, C.-L. ;
Liu, P.-H. ;
Wei, C.-C. .
Integrated Manufacturing Systems, 2001, 12 (03) :211-216
[6]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18
[7]   Review on recent progress of nanostructured anode materials for Li-ion batteries [J].
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
De Angelis, Francesco ;
Di Fabrizio, Enzo ;
Zaccaria, Remo Proietti ;
Capiglia, Claudio .
JOURNAL OF POWER SOURCES, 2014, 257 :421-443
[8]   Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes [J].
Levi, MD ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (23) :4641-4647
[9]   Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium [J].
Levi, MD ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (23) :4630-4640
[10]   Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes [J].
Liu, Gao ;
Xun, Shidi ;
Vukmirovic, Nenad ;
Song, Xiangyun ;
Olalde-Velasco, Paul ;
Zheng, Honghe ;
Battaglia, Vince S. ;
Wang, Linwang ;
Yang, Wanli .
ADVANCED MATERIALS, 2011, 23 (40) :4679-+