A rhesus monkey reference label atlas for template driven segmentation

被引:5
作者
Wisco, Jonathan J. [1 ]
Rosene, Douglas L. [1 ,4 ]
Killiany, Ronald J. [1 ]
Moss, Mark B. [1 ,4 ]
Warfield, Simon K. [2 ,3 ]
Egorova, Svetlana [2 ]
Wu, Ying [2 ]
Liptak, Zsusanna [2 ]
Warner, Jeremy [1 ]
Guttmann, Charles R. G. [2 ]
机构
[1] Boston Univ, Sch Med, Dept Anat & Neurobiol, Lab Cognit Neurobiol, Boston, MA 02118 USA
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Neurol Imaging,Dept Radiol, Boston, MA 02115 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Computat Radiol Lab,Dept Radiol, Boston, MA 02115 USA
[4] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
MRI; segmentation;
D O I
10.1111/j.1600-0684.2008.00288.x
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Background We have acquired dual-echo spin-echo (DE SE) MRI data of the rhesus monkey brain since 1994 as part of an ongoing study of normal aging. To analyze these legacy data for regional volume changes, we have created a reference label atlas for the Template Driven Segmentation (TDS) algorithm. Methods The atlas was manually created from DE SE legacy MRI data of one behaviorally normal, young, male rhesus monkey and consisted of 14 regions of interest (ROI's). We analyzed the reproducibility and validity of the TDS algorithm using the atlas relative to manual segmentation. Results ROI volumes were comparable between the two segmentation methodologies, except TDS overestimated the volume of basal ganglia regions. Both methodologies were highly reproducible, but TDS had lower sensitivity and comparable specificity. Conclusions TDS segmentation calculates accurate volumes for most ROI's. Sensitivity will be improved in future studies through the acquisition of higher quality data.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 31 条
  • [1] A COMPUTERIZED SYSTEM FOR THE ELASTIC MATCHING OF DEFORMED RADIOGRAPHIC IMAGES TO IDEALIZED ATLAS IMAGES
    BAJCSY, R
    LIEBERSON, R
    REIVICH, M
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1983, 7 (04) : 618 - 625
  • [2] Template images for nonhuman primate neuroimaging: 2. Macaque
    Black, KJ
    Koller, JM
    Snyder, AZ
    Perlmutter, JS
    [J]. NEUROIMAGE, 2001, 14 (03) : 744 - 748
  • [3] Brodmann K., 1905, J JUR PSYCHOLOGIE NE, V4, P177
  • [4] An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    Desikan, Rahul S.
    Segonne, Florent
    Fischl, Bruce
    Quinn, Brian T.
    Dickerson, Bradford C.
    Blacker, Deborah
    Buckner, Randy L.
    Dale, Anders M.
    Maguire, R. Paul
    Hyman, Bradley T.
    Albert, Marilyn S.
    Killiany, Ronald J.
    [J]. NEUROIMAGE, 2006, 31 (03) : 968 - 980
  • [5] Evans A, 1994, Functional Neuroimaging: Technical Foundations, P145
  • [6] Friston KJ, 1995, HUMAN BRAIN MAPPING, V2, P165
  • [7] NONLINEAR ANISOTROPIC FILTERING OF MRI DATA
    GERIG, G
    KUBLER, O
    KIKINIS, R
    JOLESZ, FA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) : 221 - 232
  • [8] Guttmann CRG, 1999, JMRI-J MAGN RESON IM, V9, P509, DOI 10.1002/(SICI)1522-2586(199904)9:4<509::AID-JMRI2>3.3.CO
  • [9] 2-J
  • [10] Brain weight does not decrease with age in adult rhesus monkeys
    Herndon, JG
    Tigges, J
    Klumpp, SA
    Anderson, DC
    [J]. NEUROBIOLOGY OF AGING, 1998, 19 (03) : 267 - 272