Quandle coloring quivers

被引:16
作者
Cho, Karina [1 ]
Nelson, Sam [2 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Claremont Mckenna Coll, Dept Math Sci, 850 Columbia Ave, Claremont, CA 91711 USA
关键词
Quandles; enhancements; quivers; categorified link invariants; in-degree quiver polynomials; INVARIANTS;
D O I
10.1142/S0218216519500019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a quiver structure on the set of quandle colorings of an oriented knot or link diagram. This structure contains a wealth of knot and link invariants and provides a categorification of the quandle counting invariant in the most literal sense, i.e. giving the set of quandle colorings the structure of a small category which is unchanged by Reidemeister moves. We derive some new enhancements of the counting invariant from this quiver structure and show that the enhancements are proper with explicit examples.
引用
收藏
页数:12
相关论文
共 10 条
  • [1] Bar-Natan D., THE KNOT ATLAS
  • [2] Carter JS, 2005, OSAKA J MATH, V42, P499
  • [3] Quandle cohomology and state-sum invariants of knotted curves and surfaces
    Carter, JS
    Jelsovsky, D
    Kamada, S
    Langford, L
    Saito, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 3947 - 3989
  • [4] Elhamdadi M., 2015, QUANDLES INTRO ALGEB, V74
  • [5] Grindstaff GR, 2016, OSAKA J MATH, V53, P1015
  • [6] A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE
    JOYCE, D
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) : 37 - 65
  • [7] Remarks on Khovanov Homology and the Potts Model
    Kauffman, Louis H.
    [J]. PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 : 237 - 262
  • [8] An introduction to knot Floer homology
    Manolescu, Ciprian
    [J]. PHYSICS AND MATHEMATICS OF LINK HOMOLOGY, 2016, 680 : 99 - 135
  • [9] Matveev S., 1982, MAT SB, V119, P78
  • [10] Odd Khovanov homology
    Ozsvath, Peter S.
    Rasmussen, Jacob
    Szabo, Zoltan
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1465 - 1488