On LCD repeated-root cyclic codes over finite fields

被引:7
作者
Pang, Binbin [1 ]
Zhu, Shixin [1 ]
Li, Jin [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Repeated-root cyclic codes; LCD repeated-root cyclic codes; Simple-root cyclic codes; LINEAR CODES; COMPLEMENTARY;
D O I
10.1007/s12190-017-1118-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the LCD repeated-root cyclic codes of length over the finite field , where gcd. We give a necessary and sufficient condition for a repeated-root cyclic code to be LCD over . We also determine the minimum distance of LCD repeated-root cyclic codes over . Finally, we give the enumeration of LCD repeated-root cyclic codes of length n over F-q.
引用
收藏
页码:625 / 635
页数:11
相关论文
共 19 条
[1]  
Carlet C., 2017, ARXIV170208033
[2]  
Carlet C., 2017, ARXIV170304346
[3]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[4]  
Ding C. S., 2016, ARXIV160802170
[5]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[6]  
Guenda K., 2012, IEEE INT S INF THEOR
[7]   Quasi-cyclic complementary dual codes [J].
Guneri, Cem ;
Ozkaya, Buket ;
Sole, Patrick .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 42 :67-80
[8]   Construction of MDS Codes With Complementary Duals [J].
Jin, Lingfei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) :2843-2847
[9]   On MDS Negacyclic LCD Codes [J].
Koroglu, Mehmet E. ;
Sari, Mustafa .
FILOMAT, 2019, 33 (01) :1-12
[10]  
Li C. J., 2016, ARXIV160802670