Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge

被引:36
作者
Feng, Zongbao [1 ,2 ]
Saeki, Noboru [3 ]
Kuroki, Tomoyuki [2 ]
Tahara, Mitsuru [4 ]
Okubo, Masaaki [2 ]
机构
[1] Osaka Prefecture Univ, Res Org 21st Century, Naka Ku, Sakai, Osaka 5998531, Japan
[2] Osaka Prefecture Univ, Dept Mech Engn, Naka Ku, Sakai, Osaka 5998531, Japan
[3] Pearl Kogyo Co Ltd, Lab Technol Dev, Suminoe Ku, Osaka 5590015, Japan
[4] Technol Res Inst Osaka Prefecture, Text & Polymer Sect, Izumi Ku, Osaka 5941157, Japan
关键词
FLUOROCARBON POLYMER-FILMS; ATMOSPHERIC-PRESSURE; GRAFT-POLYMERIZATION; ADHESION; IMPROVEMENT; REMOVAL; REGIMES; JET;
D O I
10.1063/1.4738766
中图分类号
O59 [应用物理学];
学科分类号
摘要
The authors report on the introduction of a magnetic field to gliding arc discharge (GD) in order to enhance surface modification by nonthermal plasma at atmospheric-pressure. The GD is induced between two wire electrodes by using a pulse high-voltage power supply with peak-to-peak voltage of 5 kV. When a magnetic field of 0.25 T is applied, the GD enlarged and a 19-cm-long stretch of plasma is excited. The surface treatment of polyethylene terephthalate and polytetrafluoroethylene films is performed. The adhesion improved by up to similar to 30 times due to the enhanced chemical activity in the films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738766]
引用
收藏
页数:4
相关论文
共 24 条
[1]   GLIDING ARC - APPLICATIONS TO ENGINEERING AND ENVIRONMENT CONTROL [J].
CZERNICHOWSKI, A .
PURE AND APPLIED CHEMISTRY, 1994, 66 (06) :1301-1310
[2]   Prediction of atmospheric pressure glow discharge in dielectric-barrier system [J].
Duan, Xiaoxi ;
He, Feng ;
Ouyang, Jiting .
APPLIED PHYSICS LETTERS, 2010, 96 (23)
[3]   Gliding arc gas discharge [J].
Fridman, A ;
Nester, S ;
Kennedy, LA ;
Saveliev, A ;
Mutaf-Yardimci, O .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1999, 25 (02) :211-231
[4]   Properties of dielectric-barrier-free atmospheric pressure microplasma driven by submicrosecond dc pulse voltage [J].
Ha, Chang-Seung ;
Choi, Joon-Young ;
Kim, Dong-Hyun ;
Park, Chung-Hoo ;
Lee, Hae June ;
Lee, Ho-Jun .
APPLIED PHYSICS LETTERS, 2009, 95 (06)
[5]   Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites [J].
Kusano, Y. ;
Teodoru, S. ;
Leipold, F. ;
Andersen, T. L. ;
Sorensen, B. F. ;
Rozlosnik, N. ;
Michelsen, P. K. .
SURFACE & COATINGS TECHNOLOGY, 2008, 202 (22-23) :5579-5582
[6]   Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge [J].
Kuznetsova, IV ;
Kalashnikov, NY ;
Gutsol, AF ;
Fridman, AA ;
Kennedy, LA .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (08) :4231-4237
[7]   A large gap of radio frequency dielectric barrier atmospheric pressure glow discharge [J].
Li, B. ;
Chen, Q. ;
Liu, Z. W. .
APPLIED PHYSICS LETTERS, 2010, 96 (04)
[8]   Characteristics of gliding arc discharge plasma [J].
Lin Lie ;
Wu Bin ;
Yang Chi ;
Wu Chengkang .
PLASMA SCIENCE & TECHNOLOGY, 2006, 8 (06) :653-655
[9]   SO2 and CO gas removal and discharge characteristics of a nonthermal plasma reactor in a crossed dc magnetic field [J].
Moon, JD ;
Lee, GT ;
Chung, SH .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1999, 35 (05) :1198-1204
[10]   Thermal and nonthermal regimes of gliding arc discharge in air flow [J].
Mutaf-Yardimci, O ;
Saveliev, AV ;
Fridman, AA ;
Kennedy, LA .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (04) :1632-1641