On optimization strategies for parameter estimation in models governed by partial differential equations

被引:4
作者
Carvalho, Esdras P. [1 ]
Martinez, Julian [2 ]
Martinez, J. M. [3 ]
Pisnitchenko, Feodor [4 ]
机构
[1] Univ Estadual Maringa, Dept Math, Maringa, Parana, Brazil
[2] Univ Fed Santa Catarina, Chem & Food Engn Dept, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[4] Fed Univ ABC, Ctr Math Computat & Cognit, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Parameter estimation; Nonlinear optimization; Fluid extraction models simulation; LINEAR-DEPENDENCE CONDITION; EXTRACTION; OIL;
D O I
10.1016/j.matcom.2010.07.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Extraction problems governed by systems of partial differential equations appear in several branches of Engineering. Parameter estimation involves discretization and modeling in a finite dimensional setting. A model that arises in the supercritical extraction area is analyzed in this paper. Numerical difficulties of the nonlinear programming formulation of the estimation process are discussed and a satisfactory procedure based on unconstrained derivative-free optimization is suggested. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 32 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   On the relation between constant positive linear dependence condition and quasinormality constraint qualification [J].
Andreani, R ;
Martinez, JM ;
Schuverdt, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) :473-485
[3]  
Andreani R., OPTIMIZATIO IN PRESS
[4]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[5]  
[Anonymous], 1999, Numerical Optimization.
[6]   Global minimization using an Augmented Lagrangian method with variable lower-level constraints [J].
Birgin, E. G. ;
Floudas, C. A. ;
Martinez, J. M. .
MATHEMATICAL PROGRAMMING, 2010, 125 (01) :139-162
[7]  
Brunner G., 1994, STEINKOPFF
[8]  
Carvalho E.P., 2009, TECH REP
[9]   Nonlinear programming without a penalty function [J].
Fletcher, R ;
Leyffer, S .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :239-269
[10]   Modelling the extraction of essential oils with compressed carbon dioxide [J].
Gaspar, F ;
Lu, T ;
Santos, R ;
Al-Duri, B .
JOURNAL OF SUPERCRITICAL FLUIDS, 2003, 25 (03) :247-260