Mod-φ Convergence, II: Estimates on the Speed of Convergence

被引:5
作者
Feray, Valentin [1 ]
Meliot, Pierre-Loic [2 ]
Nikeghbali, Ashkan [1 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
[2] Univ Paris Sud, Fac Sci Orsay, Inst Math Orsay, Orsay, France
来源
SEMINAIRE DE PROBABILITES L | 2019年 / 2252卷
关键词
CENTRAL-LIMIT-THEOREM; GAUSSIAN CONVERGENCE; RANDOM-VARIABLES; APPROXIMATION; FUNCTIONALS; SUMS;
D O I
10.1007/978-3-030-28535-7_15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give estimates for the speed of convergence towards a limiting stable law in the recently introduced setting of mod-phi convergence. Namely, we define a notion of zone of control, closely related to mod-phi convergence, and we prove estimates of Berry-Esseen type under this hypothesis. Applications include: the winding number of a planar Brownian motion; classical approximations of stable laws by compound Poisson laws; examples stemming from determinantal point processes (characteristic polynomials of random matrices and zeroes of random analytic functions); sums of variables with an underlying dependency graph (for which we recover a result of Rinott, obtained by Stein's method); the magnetization in the d-dimensional Ising model; and functionals of Markov chains.
引用
收藏
页码:405 / 477
页数:73
相关论文
共 56 条
[1]  
Alon Noga, 2000, Wiley-Interscience Series in Discrete Mathematics and Optimization, V2nd
[2]   Relations between cumulants in noncommutative probability [J].
Arizmendi, Octavio ;
Hasebe, Takahiro ;
Lehner, Franz ;
Vargas, Carlos .
ADVANCES IN MATHEMATICS, 2015, 282 :56-92
[3]   ON NORMAL APPROXIMATIONS OF DISTRIBUTIONS IN TERMS OF DEPENDENCY GRAPHS [J].
BALDI, P ;
RINOTT, Y .
ANNALS OF PROBABILITY, 1989, 17 (04) :1646-1650
[4]  
Barbour A.D., 2009, PROBAB THEORY REL, V158, P859
[5]   A CENTRAL LIMIT-THEOREM FOR DECOMPOSABLE RANDOM-VARIABLES WITH APPLICATIONS TO RANDOM GRAPHS [J].
BARBOUR, AD ;
KARONSKI, M ;
RUCINSKI, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) :125-145
[6]   The accuracy of the Gaussian approximation to the sum of independent variates [J].
Berry, Andrew C. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) :122-136
[7]  
Billingsley P., 1995, WILEY SERIES PROBABI
[8]   THE BERRY-ESSEEN THEOREM FOR FUNCTIONALS OF DISCRETE MARKOV-CHAINS [J].
BOLTHAUSEN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (01) :59-73
[9]  
Bona M., 2010, London Math. Soc. Lecture Note Ser., V376, P89
[10]   The characteristic polynomial of a random unitary matrix: A probabilistic approach [J].
Bourgade, P. ;
Hughes, C. P. ;
Nikeghbali, A. ;
Yor, M. .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :45-69