Thermally and mechanically driven quantum turbulence in helium II

被引:41
|
作者
Baggaley, A. W. [1 ]
Sherwin, L. K. [1 ]
Barenghi, C. F. [1 ]
Sergeev, Y. A. [2 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Joint Quantum Ctr Durham Newcastle, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Newcastle Univ, Sch Mech & Syst Engn, Joint Quantum Ctr Durham Newcastle, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
LIQUID-HELIUM; MUTUAL FRICTION; HEAT CURRENT; HOMOGENEOUS TURBULENCE; SUPERFLUID TURBULENCE; VORTEX; PRESSURE; VORTICITY; DYNAMICS; CURRENTS;
D O I
10.1103/PhysRevB.86.104501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In most experiments with superfluid helium, turbulence is generated thermally (by applying a heat flux, as in thermal counterflow) or mechanically (by stirring the liquid). By modeling the superfluid vortex lines as reconnecting space curves with fixed circulation, and the driving normal fluid as a uniform flow (for thermal counterflow) and a synthetic turbulent flow (for mechanically driven turbulence), we determine the difference between thermally and mechanically driven quantum turbulence. We find that in mechanically driven turbulence, the energy is concentrated at the large scales, the spectrum obeys Kolmogorov scaling, vortex lines have large curvature, and the presence of coherent vortex structures induces vortex reconnections at small angles. On the contrary, in thermally driven turbulence, the energy is concentrated at the mesoscales, the curvature is smaller, the vorticity field is featureless, and reconnections occur at larger angles. Our results suggest a method to experimentally detect the presence of superfluid vortex bundles.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An Introduction to Quantum Turbulence
    W. F. Vinen
    Journal of Low Temperature Physics, 2006, 145 : 7 - 24
  • [42] Introduction to quantum turbulence
    Barenghi, Carlo F.
    Skrbek, Ladislav
    Sreenivasan, Katepalli R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 : 4647 - 4652
  • [43] Progress in Characterizing the Route to Geostrophic Turbulence and Redesigning Thermally Driven Rotating Annulus Experiments
    Richard L. Pfeffer
    Scott Applequist
    Robin Kung
    Christopher Long
    George Buzyna
    Theoretical and Computational Fluid Dynamics, 1997, 9 : 253 - 267
  • [44] Mesoscale helicity distinguishes Vinen from Kolmogorov turbulence in helium-II
    Galantucci, L.
    Barenghi, C. F.
    Parker, N. G.
    Baggaley, A. W.
    PHYSICAL REVIEW B, 2021, 103 (14)
  • [45] Rotating quantum wave turbulence
    Makinen, J. T.
    Autti, S.
    Heikkinen, P. J.
    Hosio, J. J.
    Hanninen, R.
    L'vov, V. S.
    Walmsley, P. M.
    Zavjalov, V. V.
    Eltsov, V. B.
    NATURE PHYSICS, 2023, 19 (06) : 898 - +
  • [46] Numerical Studies of Quantum Turbulence
    Tsubota, Makoto
    Fujimoto, Kazuya
    Yui, Satoshi
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 188 (5-6) : 119 - 189
  • [47] Chaotic Quantum Vortices in He II: Thermodynamic Equilibrium and Turbulence
    Nemirovskii, S. K.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2018, 27 (04) : 415 - 421
  • [48] Numerical study of velocity statistics in steady counterflow quantum turbulence
    Adachi, Hiroyuki
    Tsubota, Makoto
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [49] Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence
    Tang, Yuan
    Bao, Shiran
    Guo, Wei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (06)
  • [50] Steady-state counterflow quantum turbulence: Simulation of vortex filaments using the full Biot-Savart law
    Adachi, Hiroyuki
    Fujiyama, Shoji
    Tsubota, Makoto
    PHYSICAL REVIEW B, 2010, 81 (10):