Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths

被引:10
作者
Bauer, Christoph A. [1 ]
Schneider, Gisbert [1 ]
Goeller, Andreas H. [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[2] Bayer AG, Pharmaceut R&D, D-42096 Wuppertal, Germany
关键词
hydrogen bonds; structure-property relation; machine learning; computational chemistry; density functional theory; QUANTUM-CHEMICAL TOPOLOGY; DENSITY-FUNCTIONAL THEORY; THEORETICAL PREDICTION; COMPUTATIONAL CHEMISTRY; MOLECULAR RECOGNITION; INTERACTION ENERGIES; BASICITY; DATABASE; ACCURATE; DESIGN;
D O I
10.1002/minf.201800115
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We present two approaches for the computation of hydrogen bond acceptor strengths, one by machine-learning and one by a composite quantum-mechanical protocol, both based on the well-established pK(BHX) scale and dataset. The QM calculations after a necessary linear fit reproduce the complexation free energies in solution with an RMSE of 2.6 kJ mol(-1), not far off the expected error of 2 kJ mol(-1) obtained from the comparison of experimental data from two different sources. The second approach is by Gaussian Process Regression (GPR) machine-learning. We describe the hydrogen bond acceptor atoms by a radial atomic reactivity descriptor that encodes their electronic and steric environment. The performance of the GPR model on an external test set corresponds to 3.3 kJ mol(-1), which is also close to the experimental error. We apply the GPR model built on experimental data to model the hydrogen bond acceptor strengths of a series of hydrogen bond acceptor sites of 10 phosphodiesterase 10 A inhibitors. The predicted values correlate well with the experimentally measured IC50 values.
引用
收藏
页数:11
相关论文
共 82 条
[51]   Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design [J].
Kenny, Peter W. ;
Montanari, Carlos A. ;
Prokopczyk, Igor M. ;
Ribeiro, Jean F. R. ;
Sartori, Geraldo Rodrigues .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (09) :4278-4288
[52]   Interpretation of experimental hydrogen-bond enthalpies and entropies from COSMO polarisation charge densities [J].
Klamt, Andreas ;
Reinisch, Jens ;
Eckert, Frank ;
Graton, Jerome ;
Le Questel, Jean-Yves .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (19) :7147-7154
[53]   Polarization charge densities provide a predictive quantification of hydrogen bond energies [J].
Klamt, Andreas ;
Reinisch, Jens ;
Eckert, Frank ;
Hellweg, Arnim ;
Diedenhofen, Michael .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (02) :955-963
[54]   Can Quantum-Mechanical Calculations Yield Reasonable Estimates of Hydrogen-Bonding Acceptor Strength? The Case of Hydrogen-Bonded Complexes of Methanol [J].
Kone, Mawa ;
Illien, Bertrand ;
Laurence, Christian ;
Graton, Jerome .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (47) :13975-13985
[55]   Adding calorimetric data to decision making in lead discovery: a hot tip [J].
Ladbury, John E. ;
Klebe, Gerhard ;
Freire, Ernesto .
NATURE REVIEWS DRUG DISCOVERY, 2010, 9 (01) :23-27
[56]   Complementary nature of hydrogen bond basicity and acidity scales from electrostatic and atoms in molecules properties [J].
Lamarche, O ;
Platts, JA .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (04) :677-684
[57]   Atoms in molecules investigation of the pKHB basicity scale:: electrostatic and covalent effects in hydrogen bonding [J].
Lamarche, O ;
Platts, JA .
CHEMICAL PHYSICS LETTERS, 2003, 367 (1-2) :123-128
[58]  
Lamarche O, 2002, CHEM-EUR J, V8, P457
[59]   Observations on the strength of hydrogen bonding [J].
Laurence, C ;
Berthelot, M .
PERSPECTIVES IN DRUG DISCOVERY AND DESIGN, 2000, 18 :39-60
[60]   The pKBHX Database: Toward a Better Understanding of Hydrogen-Bond Basicity for Medicinal Chemists [J].
Laurence, Christian ;
Brameld, Ken A. ;
Graton, Jerome ;
Le Questel, Jean-Yves ;
Renault, Eric .
JOURNAL OF MEDICINAL CHEMISTRY, 2009, 52 (14) :4073-4086