Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths

被引:10
作者
Bauer, Christoph A. [1 ]
Schneider, Gisbert [1 ]
Goeller, Andreas H. [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
[2] Bayer AG, Pharmaceut R&D, D-42096 Wuppertal, Germany
关键词
hydrogen bonds; structure-property relation; machine learning; computational chemistry; density functional theory; QUANTUM-CHEMICAL TOPOLOGY; DENSITY-FUNCTIONAL THEORY; THEORETICAL PREDICTION; COMPUTATIONAL CHEMISTRY; MOLECULAR RECOGNITION; INTERACTION ENERGIES; BASICITY; DATABASE; ACCURATE; DESIGN;
D O I
10.1002/minf.201800115
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We present two approaches for the computation of hydrogen bond acceptor strengths, one by machine-learning and one by a composite quantum-mechanical protocol, both based on the well-established pK(BHX) scale and dataset. The QM calculations after a necessary linear fit reproduce the complexation free energies in solution with an RMSE of 2.6 kJ mol(-1), not far off the expected error of 2 kJ mol(-1) obtained from the comparison of experimental data from two different sources. The second approach is by Gaussian Process Regression (GPR) machine-learning. We describe the hydrogen bond acceptor atoms by a radial atomic reactivity descriptor that encodes their electronic and steric environment. The performance of the GPR model on an external test set corresponds to 3.3 kJ mol(-1), which is also close to the experimental error. We apply the GPR model built on experimental data to model the hydrogen bond acceptor strengths of a series of hydrogen bond acceptor sites of 10 phosphodiesterase 10 A inhibitors. The predicted values correlate well with the experimentally measured IC50 values.
引用
收藏
页数:11
相关论文
共 82 条
[2]   HYDROGEN-BONDING .9. SOLUTE PROTON DONOR AND PROTON ACCEPTOR SCALES FOR USE IN DRUG DESIGN [J].
ABRAHAM, MH ;
DUCE, PP ;
PRIOR, DV ;
BARRATT, DG ;
MORRIS, JJ ;
TAYLOR, PJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1989, (10) :1355-1375
[3]   Application of hydrogen bonding calculations in property based drug design [J].
Abraham, MH ;
Ibrahim, A ;
Zissimos, AM ;
Zhao, YH ;
Comer, J ;
Reynolds, DP .
DRUG DISCOVERY TODAY, 2002, 7 (20) :1056-1063
[4]   HYDROGEN-BONDING .31. CONSTRUCTION OF A SCALE OF SOLUTE EFFECTIVE OR SUMMATION HYDROGEN-BOND BASICITY [J].
ABRAHAM, MH .
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1993, 6 (12) :660-684
[5]   HYDROGEN-BONDING .10. A SCALE OF SOLUTE HYDROGEN-BOND BASICITY USING LOG K VALUES FOR COMPLEXATION IN TETRACHLOROMETHANE [J].
ABRAHAM, MH ;
GRELLIER, PL ;
PRIOR, DV ;
MORRIS, JJ ;
TAYLOR, PJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1990, (04) :521-529
[6]  
[Anonymous], 2007, TURB 7 0 2 DEV U KAR
[7]  
[Anonymous], GAUSSIAN 09 REVISION
[8]   Definition of the hydrogen bond (IUPAC Recommendations 2011) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1637-1641
[9]   A density-functional model of the dispersion interaction [J].
Becke, AD ;
Johnson, ER .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (15)
[10]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100