A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE

被引:51
作者
Hachem, Walid [1 ]
Loubaton, Philippe
Najim, Jamal [1 ]
机构
[1] Telecom ParisTech, CNRS, F-75013 Paris, France
关键词
Random matrix; empirical distribution of the eigenvalues; Stieltjes transform;
D O I
10.1214/08-AAP515
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an N x n random matrix Y-n = (Y-ij(n)) with entries given by Y-ij(n) = sigma(ij)(n)/root n X-ij(n), the X-ij(n) being centered, independent and identically distributed random variables with unit variance and (sigma(ij) (n); 1 <= i <= N, 1 <= j <= n) being an array of numbers we shall refer to as a variance profile. In this article, we study the fluctuations of the random variable log det (Y-n Y-n*+ rho I-N), where Y* is the Hermitian adjoint of Y and rho > 0 is an additional parameter. We prove that, when centered and properly resealed, this random variable satisfies a central limit theorem (CLT) and has a Gaussian limit whose parameters are identified whenever N goes to infinity and N/n -> c is an element of (0, infinity). A complete description of the scaling parameter is given; in particular, it is shown that an additional term appears in this parameter in the case where the fourth moment of the X-ij's differs from the fourth moment of a Gaussian random variable. Such a CLT is of interest in the field of wireless communications.
引用
收藏
页码:2071 / 2130
页数:60
相关论文
共 35 条
[1]   A CLT for a band matrix model [J].
Anderson, GW ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :283-338
[2]  
[Anonymous], 1958, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], 2001, MATH ITS APPL
[4]  
[Anonymous], EUROPEAN T TELECOMMU
[5]  
Bai ZD, 2004, ANN PROBAB, V32, P553
[6]  
Bai ZD, 1998, ANN PROBAB, V26, P316
[7]  
Billingsley P., 1995, PROBABILITY MEASURE
[8]  
Boutet A. de Monvel, 1998, MARKOV PROCESS RELAT, V4, P175
[9]   Fluctuations of empirical laws of large random matrices [J].
Cabanal-Duvillard, T .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (03) :373-402
[10]  
Debbah M., 2003, P 6 BAION WORKSH SIG