A holographic model of the Kondo effect

被引:36
|
作者
Erdmenger, Johanna [1 ]
Hoyos, Carlos [2 ]
O'Bannon, Andy [3 ,4 ]
Wu, Jackson [5 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Israel
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[5] Natl Ctr Theoret Sci, Div Phys, Hsinchu 300, Taiwan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 12期
基金
欧洲研究理事会; 以色列科学基金会;
关键词
Holography and condensed matter physics (AdS/CMT); Gauge-gravity correspondence; AdS-CFT Correspondence; CONFORMAL-FIELD-THEORY; GAUGE-THEORY; DIAGONALIZATION; METALS; ENERGY;
D O I
10.1007/JHEP12(2013)086
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large-N limit, with spin SU(N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large-N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS(3), dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS(2) subspace. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Conductance fingerprint of Majorana fermions in the topological Kondo effect
    Galpin, Martin R.
    Mitchell, Andrew K.
    Temaismithi, Jesada
    Logan, David E.
    Beri, Benjamin
    Cooper, Nigel R.
    PHYSICAL REVIEW B, 2014, 89 (04):
  • [32] Axion monodromy in a model of holographic gluodynamics
    Dubovsky, Sergei
    Lawrence, Albion
    Roberts, Matthew M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02):
  • [33] A holographic model for quantum critical responses
    Robert C. Myers
    Todd Sierens
    William Witczak-Krempa
    Journal of High Energy Physics, 2016
  • [34] A holographic model for quantum critical responses
    Myers, Robert C.
    Sierens, Todd
    Witczak-Krempa, William
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [35] Casimir effect and holographic dual of wedges
    Miao, Rong-Xin
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [36] Holographic Schwinger effect in confining phase
    Sato, Yoshiki
    Yoshida, Kentaroh
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [37] Multichannel Topological Kondo Effect
    Li, Guangjie
    Oreg, Yuval
    Vaeyrynen, Jukka I.
    PHYSICAL REVIEW LETTERS, 2023, 130 (06)
  • [38] Topological symplectic Kondo effect
    Li, Guangjie
    Koenig, Elio J.
    Vayrynen, Jukka I.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [39] Holographic Schwinger effect in a soft wall AdS/QCD model
    Ding, Yue
    Zhang, Zi-qiang
    CHINESE PHYSICS C, 2021, 45 (01)
  • [40] Spinodal slowing down and scaling in a holographic model
    Caddeo, Alessio
    Henriksson, Oscar
    Hoyos, Carlos
    Sanchez-Garitaonandia, Mikel
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):