Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification

被引:31
作者
Boese, DH [1 ]
Young, DM
Stamey, JD
机构
[1] Infineum USA Inc, Linden, NJ 07036 USA
[2] Baylor Univ, Dept Stat Sci, Waco, TX 76798 USA
关键词
double sampling; misclassification; false positive; binary data; confidence interval; likelihood statistic;
D O I
10.1016/j.csda.2005.08.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we derive five first-order likelihood-based confidence intervals for a population proportion parameter based on binary data subject to false-positive misclassification and obtained using a double sampling plan. We derive confidence intervals based on certain combinations of likelihood, Fisher-information types, and likelihood-based statistics. Using Monte Carlo methods, we compare the coverage properties and average widths of three new confidence intervals for a binomial parameter. We determine that an interval estimator derived from inverting a score-type statistic is superior in terms of coverage probabilities to three competing interval estimators for the parameter configurations examined here. Utilizing the expressions derived, we also determine confidence intervals for a binary parameter using real data subject to false-positive misclassification. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3369 / 3385
页数:17
相关论文
共 19 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   A comparison of nine confidence intervals for a Poisson parameter when the expected number of events is ≤5 [J].
Barker, L .
AMERICAN STATISTICIAN, 2002, 56 (02) :85-89
[3]  
BARNDORFFNIELSE.OE, 1994, INFERENCE ASYMPTOTIC
[4]  
Berger JO, 1999, STAT SCI, V14, P1
[5]   False-positive serum human chorionic gonadotropin results: Causes, characteristics, and recognition [J].
Braunstein, GD .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2002, 187 (01) :217-224
[6]   MISCLASSIFICATION IN 2 X 2 TABLES [J].
BROSS, I .
BIOMETRICS, 1954, 10 (04) :478-486
[7]  
COHEN AC, 1960, TECHNOMETRICS, V2, P109
[8]  
EFRON B, 1978, BIOMETRIKA, V65, P457, DOI 10.1093/biomet/65.3.457
[9]  
EVANS M, 1995, BAYESIAN STAT ECONOM, P67
[10]   IMPLICATIONS OF ERRORS IN SURVEY DATA - A BAYESIAN MODEL [J].
GABA, A ;
WINKLER, RL .
MANAGEMENT SCIENCE, 1992, 38 (07) :913-925