Double-barrier magnetic tunnel junctions with GeSbTe thermal barriers for improved thermally assisted magnetoresistive random access memory cells

被引:9
作者
Cardoso, S.
Ferreira, R.
Silva, F.
Freitas, P. P.
Melo, L. V.
Sousa, R. C.
Redon, O.
MacKenzie, M.
Chapman, J. N.
机构
[1] INESC MN, P-1000029 Lisbon, Portugal
[2] Inst Super Tecn, Dept Phys, P-1096 Lisbon, Portugal
[3] CEA Grenoble, SPINTEC URA, CEA DSM, CNRS SPM,STIC, F-38054 Grenoble, France
[4] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2162813
中图分类号
O59 [应用物理学];
学科分类号
摘要
Double-barrier magnetic tunnel junction (MTJ) cells incorporating one thermal barrier (GeSbTe) were fabricated for improved thermally assisted magnetic switching. The MTJ has two Al2O3 barriers with a common weakly pinned structure (storage layer) and two pinned layers (reference). The structural quality of the double junction stack and the roughness at the (buffer/thermal barrier) level were investigated and optimized. To minimize the required heating during writing, the blocking temperature (T-B) of the storage layer is reduced to 110 degrees C by thinning the MnIr layer to 80 angstrom, while a strong exchange coupling and T-B similar to 300 degrees C are obtained at the reference layers with a synthetic antiferromagnetically coupled CoFeB/Ru/CoFeB structure pinned to 250-A-thick MnIr. For the write experiments, the current flowing through the MTJ (patterned down to 2 mu m(2)) increases the temperature above the storage layer T-B, under an external field of +/- 80 Oe. Current densities < 1 mA/mu m(2) were enough to write in the MTJs with a thermal barrier (almost half the values needed without thermal barriers, which also showed a stronger dependence of the write power on the junction area). Write power values of the order of 0.3-1.8 mW/mu m(2) were achieved. (C) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 11 条
[1]  
AKERMAN J, 2004, MAGNETOELECTRONICS
[2]   Curie point written magnetoresistive memory [J].
Beech, RS ;
Anderson, JA ;
Pohm, AV ;
Daughton, JM .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6403-6405
[3]   Ferromagnetic coupling field reduction in CoFeB tunnel junctions deposited by ion beam [J].
Cardoso, S ;
Ferreira, R ;
Freitas, PP ;
MacKenzie, M ;
Chapman, J ;
Ventura, JO ;
Sousa, JB ;
Kreissig, U .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) :2272-2274
[4]   Ion beam deposition and oxidation of spin-dependent tunnel junctions [J].
Cardoso, S ;
Gehanno, V ;
Ferreira, R ;
Freitas, PP .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :2952-2954
[5]   COMPOUND MATERIALS FOR REVERSIBLE, PHASE-CHANGE OPTICAL-DATA STORAGE [J].
CHEN, M ;
RUBIN, KA ;
BARTON, RW .
APPLIED PHYSICS LETTERS, 1986, 49 (09) :502-504
[6]   Low resistance tunnel junctions with remote plasma underoxidized thick barriers [J].
Ferreira, R ;
Freitas, PP ;
MacKenzie, M ;
Chapman, JN .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[7]   Thermal characterization and analysis of phase change random access memory [J].
Giraud, V ;
Cluzel, J ;
Sousa, V ;
Jacquot, A ;
Dauscher, A ;
Lenoir, B ;
Scherrer, H ;
Romer, S .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
[8]   Dynamic heating in submicron size magnetic tunnel junctions with exchange biased storage layer -: art. no. 10P501 [J].
Kerekes, M ;
Sousa, RC ;
Prejbeanu, IL ;
Redon, O ;
Ebels, U ;
Baraduc, C ;
Dieny, B ;
Nozières, JP ;
Freitas, PP ;
Xavier, P .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[9]   Tunneling hot spots and heating in magnetic tunnel junctions [J].
Sousa, RC ;
Prejbeanu, IL ;
Stanescu, D ;
Rodmacq, B ;
Redon, O ;
Dieny, B ;
Wang, JG ;
Freitas, PP .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6783-6785
[10]   Low-current blocking temperature writing of double barrier magnetic random access memory cells [J].
Wang, JG ;
Freitas, PP .
APPLIED PHYSICS LETTERS, 2004, 84 (06) :945-947