Near-field spectroscopy and tuning of subsurface modes in plasmonic terahertz resonators

被引:12
作者
Mitrofanov, O. [1 ,2 ]
Todorov, Y. [3 ]
Gacemi, D. [3 ]
Mottaghizadeh, A. [3 ]
Sirtori, C. [3 ]
Brener, I. [2 ,4 ]
Reno, J. L. [2 ,4 ]
机构
[1] UCL, Torrington Pl, London WC1E 7JE, England
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Lab Mat & Phenomenes Quant,UMR 7162, F-75205 Paris, France
[4] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
METAMATERIAL ABSORBER; CIRCUIT RESONATORS; PROBE; MICROCAVITIES; DIFFRACTION; WAVES;
D O I
10.1364/OE.26.007437
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Highly confined modes in THz plasmonic resonators comprising two metallic elements can enhance light-matter interaction for efficient THz optoelectronic devices. We demonstrate that sub-surface modes in such double-metal resonators can be revealed with an aperture-type near-field probe and THz time-domain spectroscopy despite strong mode confinement in the dielectric spacer. The sub-surface modes couple a fraction of their energy to the resonator surface via surface waves, which we detected with the near-field probe. We investigated two resonator geometries: a lambda/2 double-metal patch antenna with a 2 mu m thick dielectric spacer, and a three-dimensional meta-atom resonator. THz time-domain spectroscopy analysis of the fields at the resonator surface displays spectral signatures of subsurface modes. Investigations of strong light-matter coupling in resonators with sub-surface modes therefore can be assisted by the aperture-type THz near-field probes. Furthermore, near-field interaction of the probe with the resonator enables tuning of the resonance frequency for the spacer mode in the antenna geometry from 1.6 to 1.9 THz (similar to 15%). Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:7437 / 7450
页数:14
相关论文
共 44 条
[1]   Real-Space Mapping of Fano Interference in Plasmonic Metamolecules [J].
Alonso-Gonzalez, Pablo ;
Schnell, Martin ;
Sarriugarte, Paulo ;
Sobhani, Heidar ;
Wu, Chihhui ;
Arju, Nihal ;
Khanikaev, Alexander ;
Golmar, Federico ;
Albella, Pablo ;
Arzubiaga, Libe ;
Casanova, Felix ;
Hueso, Luis E. ;
Nordlander, Peter ;
Shvets, Gennady ;
Hillenbrand, Rainer .
NANO LETTERS, 2011, 11 (09) :3922-3926
[2]   Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber [J].
Alves, Fabio ;
Grbovic, Dragoslav ;
Kearney, Brian ;
Karunasiri, Gamani .
OPTICS LETTERS, 2012, 37 (11) :1886-1888
[3]  
Balanis ConstantineA., 2010, Antenna Theory, VThird
[4]   Full vectorial mapping of the complex electric near-fields of THz resonators [J].
Bhattacharya, Arkabrata ;
Rivas, Jaime Gomez .
APL PHOTONICS, 2016, 1 (08)
[5]   Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle [J].
Bitzer, Andreas ;
Ortner, Alex ;
Merbold, Hannes ;
Feurer, Thomas ;
Walther, Markus .
OPTICS EXPRESS, 2011, 19 (03) :2537-2545
[6]   Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial [J].
Bitzer, Andreas ;
Merbold, Hannes ;
Thoman, Andreas ;
Feurer, Thomas ;
Helm, Hanspeter ;
Walther, Markus .
OPTICS EXPRESS, 2009, 17 (05) :3826-3834
[7]   Terahertz spectroscopy of the reactive and radiative near-field zones of split ring resonator [J].
Blanchard, F. ;
Ooi, K. ;
Tanaka, T. ;
Doi, A. ;
Tanaka, K. .
OPTICS EXPRESS, 2012, 20 (17) :19395-19403
[8]   Controlling the Fano interference in a plasmonic lattice [J].
Christ, A. ;
Ekinci, Y. ;
Solak, H. H. ;
Gippius, N. A. ;
Tikhodeev, S. G. ;
Martin, O. J. F. .
PHYSICAL REVIEW B, 2007, 76 (20)
[9]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[10]   Mapping Magnetic Near-Field Distributions of Plasmonic Nanoantennas [J].
Denkova, Denitza ;
Verellen, Niels ;
Silhanek, Alejandro V. ;
Valev, Ventsislav K. ;
Van Dorpe, Pol ;
Moshchalkov, Victor V. .
ACS NANO, 2013, 7 (04) :3168-3176