Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws

被引:10
作者
Chen, GQ
Junca, S
Rascle, M
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] IUFM, CNRS, UMR 6621, F-06108 Nice, France
[3] Univ Nice, CNRS, UMR 6621, F-06108 Nice, France
[4] Univ Nice, Lab JA Dieudonne, F-06108 Nice, France
基金
美国国家科学基金会;
关键词
nonlinear geometric optics; entropy solutions in L-infinity; multidimensional conservation laws; validity; profile; perturbation; new approach; entropy dissipation; compactness; homogenization; oscillation; scaling; stability; multiscale; BV;
D O I
10.1016/j.jde.2005.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonlinear geometric optics with various frequencies for entropy solutions only in L-infinity of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L-1-stability. New multidimensional features are recognized, especially including nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric optics for entropy solutions in L-infinity of multidimensional scalar conservation laws is justified. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:439 / 475
页数:37
相关论文
共 31 条
[1]  
[Anonymous], 1999, SYSTEMS CONSERVATION
[2]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[3]   Decay of entropy solutions of nonlinear conservation laws [J].
Chen, GQ ;
Frid, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (02) :95-127
[4]  
CHEN GQ, 1989, CHINESE SCI BULL, V34, P15
[5]   Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws [J].
Chen, GQ ;
Rascle, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) :205-220
[6]  
CHEN GQ, 1998, NONLINEAR PARTIAL DI, P28
[7]   Justification of nonlinear geometric optics for a system of laws of conservation [J].
Cheverry, C .
DUKE MATHEMATICAL JOURNAL, 1997, 87 (02) :213-263
[8]   The modulation equations of nonlinear geometric optics [J].
Cheverry, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (7-8) :1119-1140
[9]  
Corduneanu C., 1968, Almost periodic functions
[10]  
Dafermos C., 2000, Hyperbolic Conservation Laws in Continuum Physics