On the convergence of right transforming iterations for the numerical solution of PDE-constrained optimization problems

被引:0
作者
Linsenmann, Christopher [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
关键词
right transforming iterations; iterative KKT solver; optimization problems with PDE constraints; asymptotic contraction rate; INTERIOR-POINT METHODS; NAVIER-STOKES EQUATIONS; TOPOLOGY OPTIMIZATION; MULTIGRID METHODS; FLOW PROBLEMS; SMOOTHERS; SYSTEMS; SHAPE;
D O I
10.1002/nla.788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an iterative solver, called right transforming iterations (or right transformations), for linear systems with a certain structure in the system matrix, such as they typically arise in the framework of KarushKuhnTucker (KKT) conditions for optimization problems under PDE constraints. The construction of the right transforming scheme depends on an inner approximate solver for the underlying PDE subproblems. We give a rigorous convergence proof for the right transforming iterative scheme in dependence on the convergence properties of the inner solver. Provided that a fast subsolver is available, this iterative scheme represents an efficient way of solving first-order optimality conditions. Numerical examples endorse the theoretically predicted contraction rates. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:621 / 638
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1994, ITERATIVE SOLUTION L
[2]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
[3]  
Antil H, 2007, J NUMER MATH, V15, P81, DOI [10.1515/jnma.2007.005, 10.1515/JNUM.2007.005]
[4]  
Antil H, 2009, LECT NOTES COMP SCI, V70, P15
[5]  
Antil H, 2008, CONTROL CYBERN, V37, P771
[6]   Iterative solution of augmented systems arising in interior methods [J].
Forsgren, Anders ;
Gill, Philip E. ;
Griffin, Joshua D. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :666-690
[7]  
Gay D.M., 1998, ADV NONLINEAR PROGRA, P31
[8]  
Gill P. E., 1981, Practical optimization
[9]  
Golub G, 2000, SCCM0005 TR STANDF U
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS