Heisenberg limit for detecting vacuum birefringence

被引:17
作者
Ahmadiniaz, N. [1 ]
Cowan, T. E. [1 ,2 ]
Sauerbrey, R. [1 ,3 ]
Schramm, U. [1 ,2 ]
Schlenvoigt, H-P [1 ]
Schuetzhold, R. [1 ,4 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Inst Angew Phys, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
关键词
PHOTON ELASTIC-SCATTERING; FIELD; POLARIZATION; SEARCH; LIGHT;
D O I
10.1103/PhysRevD.101.116019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantum electrodynamics predicts the vacuum to behave as a nonlinear medium, including effects such as birefringence. However, for experimentally available field strengths, this vacuum polarizability is extremely small and thus very hard to measure. In analogy to the Heisenberg limit in quantum metrology, we study the minimum requirements for such a detection in a given strong field (the pump field). Using a laser pulse as the probe field, we find that its energy must exceed a certain threshold depending on the interaction time. However, a detection at that threshold, i.e., the Heisenberg limit, requires highly nonlinear measurement schemes-while for ordinary linear-optics schemes, the required energy (Poisson or shot noise limit) is much larger. Finally, we discuss several currently considered experimental scenarios from this point of view.
引用
收藏
页数:10
相关论文
共 103 条
[1]  
Aaboud M, 2017, NAT PHYS, V13, P852, DOI [10.1038/nphys4208, 10.1038/NPHYS4208]
[2]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[3]   PHOTON SPLITTING IN A STRONG MAGNETIC FIELD [J].
ADLER, SL ;
BAHCALL, JN ;
CALLAN, CG ;
ROSENBLU.MN .
PHYSICAL REVIEW LETTERS, 1970, 25 (15) :1061-&
[4]   Photon splitting in a strong magnetic field: Recalculation and comparison with previous calculations [J].
Adler, SL ;
Schubert, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1695-1698
[5]   PHOTON SPLITTING AND PHOTON DISPERSION IN A STRONG MAGNETIC FIELD [J].
ADLER, SL .
ANNALS OF PHYSICS, 1971, 67 (02) :599-&
[6]  
Agapova I., ARXIV14041177
[7]   Experimental investigation of high-energy photon splitting in atomic fields [J].
Akhmadaliev, SZ ;
Kezerashvili, GY ;
Klimenko, SG ;
Lee, RN ;
Malyshev, VM ;
Maslennikov, AL ;
Milov, AM ;
Milstein, AI ;
Muchnoi, NY ;
Naumenkov, AI ;
Panin, VS ;
Peleganchuk, SV ;
Pospelov, GE ;
Protopopov, IY ;
Romanov, LV ;
Shamov, AG ;
Shatilov, DN ;
Simonov, EA ;
Strakhovenko, VM ;
Tikhonov, YA .
PHYSICAL REVIEW LETTERS, 2002, 89 (06)
[8]   Delbruck scattering at energies of 140-450 MeV [J].
Akhmadaliev, SZ ;
Kezerashvili, GY ;
Klimenko, SG ;
Malyshev, VM ;
Maslennikov, AL ;
Milov, AM ;
Milstein, AI ;
Muchnoi, NY ;
Naumenkov, AI ;
Panin, VS ;
Peleganchuk, SV ;
Popov, VG ;
Pospelov, GE ;
Protopopov, IY ;
Romanov, LV ;
Shamov, AG ;
Shatilov, DN ;
Simonov, EA ;
Tikhonov, YA .
PHYSICAL REVIEW C, 1998, 58 (05) :2844-2850
[9]  
Aleksandrov E. B., 1985, Soviet Physics - JETP, V62, P680
[10]  
[Anonymous], 2012, Matrix computations