Synthesis of three-revolute spatial chains for body guidance

被引:9
作者
Hauenstein, Jonathan D. [1 ]
Wampler, Charles W. [2 ]
Pfurner, Martin [3 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Gen Motors R&D, Warren, MI USA
[3] Univ Innsbruck, Innsbruck, Austria
基金
美国国家科学基金会;
关键词
Kinematics; Mechanism synthesis; Body guidance; Numerical algebraic geometry; Polynomial continuation; 3R ROBOT MANIPULATORS; POLYNOMIAL SYSTEMS; GEOMETRIC DESIGN; SETS;
D O I
10.1016/j.mechmachtheory.2016.12.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
For a given mechanism type, the solution set of a body guidance synthesis problem comprises all mechanisms whose end-effector can reach a set of prescribed poses (position and orientation). For three-revolute spatial chains, five general poses will yield a synthesis problem having only finitely many solutions, while specifying fewer than five poses leads to higher-dimensional solution sets. We use numerical algebraic geometry to compute solution sets for two to five general poses, and in particular, we find, for the first time, that the five-pose synthesis problem generically has 456 solutions. We also show how our results agree with and extend results in the literature.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 25 条
[1]  
Bates DJ, 2013, SOFTW ENVIRON TOOLS
[2]  
Blum L., 1998, COMPLEXITY REAL COMP, DOI DOI 10.1007/978-1-4612-0701-6
[3]   Decomposing Solution Sets of Polynomial Systems Using Derivatives [J].
Brake, Daniel A. ;
Hauenstein, Jonathan D. ;
Liddell, Alan C., Jr. .
MATHEMATICAL SOFTWARE, ICMS 2016, 2016, 9725 :127-135
[4]  
Burmester L., 1888, Lehrbuch der Kinematik
[5]  
Chen P., 1967, ASME J. Eng. Ind, V91, P209
[6]  
Denavit J., 1955, J APPL MECH, V22, P215, DOI [DOI 10.1115/1.4011045, 10.1115/1.4011045]
[7]  
Ewing R., 1986, MERGING DISCIPLINES, P185
[8]  
Hauenstein J. D., 2015, ARXIV150707069
[9]   Algorithm 921: alphaCertified: Certifying Solutions to Polynomial Systems [J].
Hauenstein, Jonathan D. ;
Sottile, Frank .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (04)
[10]   REGENERATION HOMOTOPIES FOR SOLVING SYSTEMS OF POLYNOMIALS [J].
Hauenstein, Jonathan D. ;
Sommese, Andrew J. ;
Wampler, Charles W. .
MATHEMATICS OF COMPUTATION, 2011, 80 (273) :345-377