Some remarks on finite-gap solutions of the Ernst equation

被引:14
作者
Korotkin, D
机构
关键词
D O I
10.1016/S0375-9601(97)00160-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relationship between the class of algebro-geometrical (finite-gap) solutions of the Ernst equation constructed by Korotkin and Matveev [Theor. Math. Phys. 77 (1989) 1018; St. Petersburg Math. J. 1 (1990) 379] and the solutions recently constructed by Meinel and Neugebauer [Phys. Lett. A 210 (1996) 160] is discussed. A new formula for the general algebro-geometrical solution is obtained. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 12 条
[1]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[2]  
KOROTKIN D, 1994, SFB288
[3]   ELLIPTIC SOLUTIONS OF STATIONARY AXISYMMETRICAL EINSTEIN EQUATION [J].
KOROTKIN, DA .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (12) :2587-2613
[5]   SOLUTIONS OF THE VACUUM EINSTEIN EQUATION HAVING TOROIDAL INFINITE RED-SHIFT SURFACE [J].
KOROTKIN, DA .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (11) :L219-L222
[6]  
KOROTKIN DA, 1990, LENINGRAD MATH J, V1, P379
[7]  
KOROTKIN DA, 1991, COMMUN MATH PHYS, V137, P353
[8]   Solutions of Einstein's field equations related to Jacobi's inversion problem [J].
Meinel, R ;
Neugebauer, G .
PHYSICS LETTERS A, 1996, 210 (03) :160-162
[9]  
MUMFORD D, 1983, TATA LECTURES THETA, V1
[10]  
MUMFORD D, 1984, TATA LECTURES THETA, V2