Koopman Operator Spectrum for Random Dynamical Systems

被引:35
作者
Crnjaric-Zic, Nelida [1 ]
Macesic, Senka [1 ]
Mezic, Igor [2 ]
机构
[1] Univ Rijeka, Fac Engn, Vukovarska 58, Rijeka 51000, Croatia
[2] Univ Calif Santa Barbara, Fac Mech Engn & Math, Santa Barbara, CA 93106 USA
关键词
Stochastic Koopman operator; Random dynamical systems; Stochastic differential equations; Dynamic mode decomposition; MODE DECOMPOSITION; REDUCTION;
D O I
10.1007/s00332-019-09582-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Koopman operator associated with the discrete and the continuous-time random dynamical system (RDS). We provide results that characterize the spectrum and the eigenfunctions of the stochastic Koopman operator associated with different types of linear RDS. Then we consider the RDS for which the associated Koopman operator family is a semigroup, especially those for which the generator can be determined. We define a stochastic Hankel-DMD algorithm for numerical approximations of the spectral objects (eigenvalues, eigenfunctions) of the stochastic Koopman operator and prove its convergence. We apply the methodology to a variety of examples, revealing objects in spectral expansions of the stochastic Koopman operator and enabling model reduction.
引用
收藏
页码:2007 / 2056
页数:50
相关论文
共 58 条
[11]  
Da Prato Giuseppe, 2014, Encyclopedia of Mathematics and its Applications, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9781107295513]
[12]   DATA DRIVEN MODAL DECOMPOSITIONS: ANALYSIS AND ENHANCEMENTS [J].
Drmac, Zlatko ;
Mezic, Igor ;
Mohr, Ryan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04) :A2253-A2285
[13]  
Dynkin E.B., 1965, GRUNDLEHREN MATH WIS
[14]  
Engel K.-J., 2001, ONE PARAMETER SEMIGR
[15]   Bounds for Deterministic and Stochastic Dynamical Systems using Sum-of-Squares Optimization [J].
Fantuzzi, G. ;
Goluskin, D. ;
Huang, D. ;
Chernyshenko, S. I. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04) :1962-1988
[16]   SPECTRAL SIGNATURE OF THE PITCHFORK BIFURCATION - LIOUVILLE EQUATION APPROACH [J].
GASPARD, P ;
NICOLIS, G ;
PROVATA, A ;
TASAKI, S .
PHYSICAL REVIEW E, 1995, 51 (01) :74-94
[17]   Data-driven spectral decomposition and forecasting of ergodic dynamical systems [J].
Giannakis, Dimitrios .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) :338-396
[18]   Reply to "'Tolerance' of Misused Terminology? Enforcing Standardized Phenotypic Definitions" [J].
Haaber, Jakob ;
Ingmer, Hanne ;
Cohen, Stanley N. .
MBIO, 2015, 6 (03)
[19]   De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets [J].
Hemati, Maziar S. ;
Rowley, Clarence W. ;
Deem, Eric A. ;
Cattafesta, Louis N. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (04) :349-368
[20]   Uncertainty in the dynamics of conservative maps [J].
Junge, O ;
Marsden, JE ;
Mezic, I .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :2225-2230