Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions

被引:77
|
作者
Zhu, Dongjie [1 ,2 ]
Wang, Xiangxi [1 ]
Fang, Qianglin [3 ]
Van Etten, James L. [4 ,5 ]
Rossmann, Michael G. [3 ]
Rao, Zihe [1 ,6 ,7 ]
Zhang, Xinzheng [1 ,6 ,8 ]
机构
[1] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromol, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[2] Univ Sci & Technol China, Sch Life Sci, Hefei 230026, Anhui, Peoples R China
[3] Purdue Univ, Dept Biol Sci, 240 South Martin Jischke Dr, W Lafayette, IN 47907 USA
[4] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68583 USA
[5] Univ Nebraska, Nebraska Ctr Virol, Lincoln, NE 68583 USA
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[7] Tsinghua Univ, Sch Med, Lab Struct Biol, Beijing 100084, Peoples R China
[8] Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromol, Ctr Biol Imaging, Beijing 100101, Peoples R China
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
美国国家卫生研究院; 国家重点研发计划;
关键词
ANGSTROM RESOLUTION; ELECTRON-MICROSCOPY; CRYOELECTRON MICROSCOPY; ATOMIC-STRUCTURE; CTF CORRECTION; VIRUSES; COMPLEX; CRYOMICROSCOPY; MICROGRAPHS; IMPROVES;
D O I
10.1038/s41467-018-04051-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Ewald sphere effect is generally neglected when using the Central Projection Theorem for cryo electron microscopy single-particle reconstructions. This can reduce the resolution of a reconstruction. Here we estimate the attainable resolution and report a "block-based" reconstruction method for extending the resolution limit. We find the Ewald sphere effect limits the resolution of large objects, especially large viruses. After processing two real datasets of large viruses, we show that our procedure can extend the resolution for both datasets and can accommodate the flexibility associated with large protein complexes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CORRECTING FOR THE EWALD SPHERE IN HIGH-RESOLUTION SINGLE-PARTICLE RECONSTRUCTIONS
    Leong, Peter A.
    Yu, Xuekui
    Zhou, Z. Hong
    Jensen, Grant J.
    METHODS IN ENZYMOLOGY, VOL 482: CRYO-EM, PART B: 3-D RECONSTRUCTION, 2010, 482 : 369 - 380
  • [2] Single-Particle Cryo-EM at Crystallographic Resolution
    Cheng, Yifan
    CELL, 2015, 161 (03) : 450 - 457
  • [4] Generalized single-particle cryo-EM - a historical perspective
    Frank, Joachim
    MICROSCOPY, 2016, 65 (01) : 3 - 8
  • [5] Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM
    Liu, Zheng
    Gutierrez-Vargas, Cristina
    Wei, Jia
    Grassucci, Robert A.
    Sun, Ming
    Espina, Noel
    Madison-Antenucci, Susan
    Tong, Liang
    Frank, Joachim
    PROTEIN SCIENCE, 2017, 26 (01) : 82 - 92
  • [6] Principles of cryo-EM single-particle image processing
    Sigworth, Fred J.
    MICROSCOPY, 2016, 65 (01) : 57 - 67
  • [7] Frealign: An Exploratory Tool for Single-Particle Cryo-EM
    Grigorieff, N.
    RESOLUTION REVOLUTION: RECENT ADVANCES IN CRYOEM, 2016, 579 : 191 - 226
  • [8] Unsupervised particle sorting for high-resolution single-particle cryo-EM
    Zhou, Ye
    Moscovich, Amit
    Bendory, Tamir
    Bartesaghi, Alberto
    INVERSE PROBLEMS, 2020, 36 (04)
  • [9] Single-particle Cryo-EM and molecular dynamics simulations: A perfect match
    Bock, Lars, V
    Igaev, Maxim
    Grubmueller, Helmut
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 86
  • [10] High-resolution single-particle cryo-EM of samples vitrified in boiling nitrogen
    Engstrom, Tyler
    Clinger, Jonathan A.
    Spoth, Katherine A.
    Clarke, Oliver B.
    Closs, David S.
    Jayne, Richard
    Apker, Benjamin A.
    Thorne, Robert E.
    IUCRJ, 2021, 8 : 867 - 877