Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis

被引:59
作者
Girardi, Cesar Luis [1 ]
Rombaldi, Cesar Valmor [2 ]
Dal Cero, Joceani [2 ]
Nobile, Paula M. [3 ]
Laurens, Francois [3 ]
Bouzayen, Mondher [4 ]
Quecini, Vera [1 ]
机构
[1] Embrapa Uva & Vinho, BR-95700000 Bento Goncalves, RS, Brazil
[2] Univ Fed Pelotas, Fac Agron Eliseu Maciel, Dept Ciencia & Tecnol Agroind, BR-96010900 Pelotas, RS, Brazil
[3] UMR 1259 Genet & Hort GenHort, Angers, France
[4] INRA, ENSAT, INP, UMR Genom & Biotechnol Fruits 990, F-31320 Castanet Tolosan, France
关键词
Apple; Ethylene; Fungal pathogen; Fruit ripening; Physiological conditions; Venturia inequalis; EXPRESSED SEQUENCE TAGS; DNA-BINDING DOMAIN; GENE-EXPRESSION; ARABIDOPSIS-THALIANA; FRUIT-DEVELOPMENT; VITIS-VINIFERA; FAMILY; ETHYLENE; RICE; BIOSYNTHESIS;
D O I
10.1016/j.scienta.2012.12.017
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) superfamily of transcriptional regulators is involved in several growth, development and stress responses processes in higher plants. Currently, the available information on the biological roles of AP2/ERF genes is derived from Arabidopsis thaliana. In the present work, we have investigated genomic and transcriptional aspects of AP2/ERF genes in the economically important perennial species, Malus x domestica. We have identified 259 sequences containing at least one ERF domain in apple genome. The vast majority of the putative proteins display predicted nuclear localization, compatible with a biological role in transcription regulation. The AP2 and ERF families are greatly expanded in apple. Whole-genome analyses in other plant species have identified a single genomic sequence with divergent ERF, whereas in apple seven soloists are present. In the apple genome, the most noteworthy expansion occurred in sub-groups V, VIII and IX of the ERF family. Expression profiling analyses have revealed the association of ripening-involved ERF genes to scab (Venturia inequalis) pathogenesis in the susceptible Gala cultivar, indicating that gene expansion processes were accompanied by functional divergence. The presented analyses of AP2/ERF genes in apple provide evidences of shared ethylene-mediated signaling pathways in ripening and disease responses. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 45 条
[1]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[2]   Resistance of Malus domestica Fruit to Botrytis cinerea Depends on Endogenous Ethylene Biosynthesis [J].
Akagi, Aya ;
Dandekar, Abhaya M. ;
Stotz, Henrik U. .
PHYTOPATHOLOGY, 2011, 101 (11) :1311-1321
[3]   Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development [J].
Alba, R ;
Payton, P ;
Fei, ZJ ;
McQuinn, R ;
Debbie, P ;
Martin, GB ;
Tanksley, SD ;
Giovannoni, JJ .
PLANT CELL, 2005, 17 (11) :2954-2965
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]  
Bailey TL., 1994, Proc Int Conf Intel Syst Mol Biol, V2, P28
[6]   Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L cv Shiraz grape berries and the implications for pathway regulation [J].
Boss, PK ;
Davies, C ;
Robinson, SP .
PLANT PHYSIOLOGY, 1996, 111 (04) :1059-1066
[7]   The role of ethylene in host-pathoven interactions [J].
Broekaert, Willem F. ;
Delaure, Stijn L. ;
De Bolle, Miguel F. C. ;
Cammue, Bruno P. A. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2006, 44 :393-416
[8]   FUNCTIONAL-ANALYSIS OF DNA-SEQUENCES RESPONSIBLE FOR ETHYLENE REGULATION OF A BEAN CHITINASE GENE IN TRANSGENIC TOBACCO [J].
BROGLIE, KE ;
BIDDLE, P ;
CRESSMAN, R ;
BROGLIE, R .
PLANT CELL, 1989, 1 (06) :599-607
[9]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[10]   Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple vitis species and development of a compendium of gene expression during berry development [J].
da Silva, FG ;
Iandolino, A ;
Al-Kayal, F ;
Bohlmann, MC ;
Cushman, MA ;
Lim, H ;
Ergul, A ;
Figueroa, R ;
Kabuloglu, EK ;
Osborne, C ;
Rowe, J ;
Tattersall, E ;
Leslie, A ;
Xu, J ;
Baek, J ;
Cramer, GR ;
Cushman, JC ;
Cook, DR .
PLANT PHYSIOLOGY, 2005, 139 (02) :574-597