Bayesian-based Hyperparameter Optimization for Spiking Neuromorphic Systems

被引:0
作者
Parsa, Maryam [1 ]
Mitchell, J. Parker [2 ]
Schuman, Catherine D. [2 ]
Patton, Robert M. [2 ]
Potok, Thomas E. [2 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Dept ECE, W Lafayette, IN 47907 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2019年
关键词
Hyperparameter Optimization; Spiking Neuromorphic Computing; Accurate and Energy Efficient Machine Learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing a neuromorphic computing system involves selection of several hyperparameters that not only affect the accuracy of the framework, but also the energy efficiency and speed of inference and training. These hyperparameters might be inherent to the training of the spiking neural network (SNN), the input/output encoding of the real-world data to spikes, or the underlying neuromorphic hardware. In this work, we present a Bayesian-based hyperparameter optimization approach for spiking neuromorphic systems, and we show how this optimization framework can lead to significant improvement in designing accurate neuromorphic computing systems. In particular, we show that this hyperparameter optimization approach can discover the same optimal hyperparameter set for input encoding as a grid search, but with far fewer evaluations and far less time. We also show the impact of hardware-specific hyperparameters on the performance of the system, and we demonstrate that by optimizing these hyperparameters, we can achieve significantly better application performance.
引用
收藏
页码:4472 / 4478
页数:7
相关论文
共 25 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]   PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference [J].
Ankit, Aayush ;
El Hajj, Izzat ;
Chalamalasetti, Sai Rahul ;
Ndu, Geoffrey ;
Foltin, Martin ;
Williams, R. Stanley ;
Faraboschi, Paolo ;
Hwu, Wen-mei ;
Strachan, John Paul ;
Roy, Kaushik ;
Milojicic, Dejan S. .
TWENTY-FOURTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXIV), 2019, :715-731
[3]  
[Anonymous], 2017, ARXIV
[4]  
[Anonymous], 2016, ARXIV 160407269
[5]  
[Anonymous], 2007, IEEE INT C ICML
[6]  
[Anonymous], 2011, P 24 ADV NEUR INF PR
[7]  
Arthur J., 2006, ADV NEURAL INFORM PR, P75
[8]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[9]   Benchmarks for progress in neuromorphic computing [J].
Davies, Mike .
NATURE MACHINE INTELLIGENCE, 2019, 1 (09) :386-388
[10]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99