Gaussian Mixture Multiple-Model Multi-Bernoulli Filters for Nonlinear Models Via Unscented Transforms

被引:0
|
作者
Jiang, Tongyang [1 ,2 ]
Liu, Meiqin [1 ,2 ]
Wang, Xie [2 ]
Zhang, Senlin [2 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
来源
2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2015年
关键词
RANDOM FINITE SETS; MULTITARGET;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The multiple-model multi-Bernoulli (MM-MB) filter is a new attractive approach for estimating multiple maneuvering targets in the presence of clutter, missed detection and data association uncertainty. In this paper, we extend the Gaussian Mixture (GM)MM-MB filter to nonlinear models by using unscented transform techniques. Moreover, in order to improve the robustness and numerical stability of the unscented Kalman (UK) GM-MM-MB filtering algorithm, we propose the squareroot UK (SUK) GM implementation of the MM-MB filter for nonlinear models. A numerical example is presented to verify the effectiveness of the UK-GM-MM-MB and SUK-GM-MM-MB filtering approaches. Simulation results also show that the SUK-GM-MM-MB filtering approach produces the same filtering accuracy as the UK-GM-MM-MB filtering approach.
引用
收藏
页码:1262 / 1269
页数:8
相关论文
共 17 条
  • [1] Gaussian implementation of the multi-Bernoulli mixture filter
    Garcia-Fernandez, Angel E.
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Williamst, Jason L.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [2] Interactive Multiple-Target Tracking via Labeled Multi-Bernoulli Filters
    Gostar, Amirali K.
    Rathnayake, Tharindu
    Fu, Chunyun
    Bab-Hadiashar, Alireza
    Battistelli, Giorgi
    Chisci, Luigi
    Hoseinnezhad, Reza
    ICCAIS 2019: THE 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES, 2019,
  • [3] A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets
    Cao, Chenghu
    Zhao, Yongbo
    SIGNAL PROCESSING, 2021, 186
  • [4] Extended target trajectory Poisson multi-Bernoulli mixture filters with unknown detection probability
    Xue, Qiutiao
    Liao, Guisheng
    Zheng, Xiangfei
    Wu, Sunyong
    DIGITAL SIGNAL PROCESSING, 2024, 150
  • [5] A Poisson multi-Bernoulli mixture filter for tracking multiple resolvable group targets
    Zhou, Yusong
    Zhao, Jin
    Wu, Sunyong
    Liu, Chang
    DIGITAL SIGNAL PROCESSING, 2024, 144
  • [6] Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering
    Granstrom, Karl
    Fatemi, Maryam
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (01) : 208 - 225
  • [7] Multi-target Tracking Based on Gaussian Mixture Labeled Multi-Bernoulli Filter with Adaptive Gating
    Park, Woo Jung
    Park, Chan Gook
    2019 FIRST INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP 2019), 2019, : 226 - 229
  • [8] An Implementation of the Poisson Multi-Bernoulli Mixture Trajectory Filter via Dual Decomposition
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Garcia-Fernandez, Angel F.
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2453 - 2460
  • [9] An Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models
    Tran Thien Dat Nguyen
    Cong-Thanh Do
    Hoa Van Nguyen
    2022 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2022, : 84 - 89
  • [10] Centralized multiple-view sensor fusion using labeled multi-Bernoulli filters
    Wang, Xiaoying
    Gostar, Amirali K.
    Rathnayake, Tharindu
    Xu, Benlian
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    SIGNAL PROCESSING, 2018, 150 : 75 - 84