A lower bound on the waist of unit spheres of uniformly convex normed spaces

被引:0
作者
Memarian, Yashar [1 ]
机构
[1] UCL, Fac Math & Phys Sci, London WC1E 6BT, England
关键词
uniformly convex; normed space; waist; convexly derived measures; isoperimetry;
D O I
10.1112/S0010437X1200019X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a lower bound on the waist of the unit sphere of a uniformly convex normed space by using the localization technique in codimension greater than one and a strong version of the Borsuk-Ulam theorem. The tools used in this paper follow ideas of Gromov in [Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), 178-215] and we also include an independent proof of our main theorem which does not rely on Gromov's waist of the sphere. Our waist inequality in codimension one recovers a version of the Gromov-Milman inequality in [Generalisation of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Math. 62 (1987), 263-282].
引用
收藏
页码:1238 / 1264
页数:27
相关论文
共 13 条
  • [1] ALESKER S, 1999, MATH SCI RES I PUBL, V34, P17
  • [2] Concentration of the distance in finite dimensional normed spaces
    Arias-De-Reyna, J
    Ball, K
    Villa, R
    [J]. MATHEMATIKA, 1998, 45 (90) : 245 - 252
  • [3] From brunn-minkowski to sharp sobolev inequalities
    Bobkov, S. G.
    Ledoux, M.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 369 - 384
  • [4] Borell C., 1975, Period. Math. Hungar, V6, P111, DOI [10.1007/BF02018814, DOI 10.1007/BF02018814]
  • [5] Isoperimetry of waists and concentration of maps
    Gromov, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) : 178 - 215
  • [6] GROMOV M, 1983, J DIFFER GEOM, V18, P1
  • [7] GROMOV M, 1987, COMPOS MATH, V62, P263
  • [8] Hirsch F., 1999, GRAD TEXT M, V192, DOI 10.1007/978-1-4612-1444-1
  • [9] lvarezA Paiva J. C., 2004, MSRI PUBLICATIONS, V49, P1
  • [10] Memarian Y., 2010, THESIS U PARIS SUD O