Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data

被引:65
作者
Catlett, Natalie L. [1 ]
Bargnesi, Anthony J. [1 ]
Ungerer, Stephen [1 ]
Seagaran, Toby [1 ]
Ladd, William [1 ]
Elliston, Keith O. [1 ]
Pratt, Dexter [1 ]
机构
[1] Selventa, Cambridge, MA 02140 USA
来源
BMC BIOINFORMATICS | 2013年 / 14卷
关键词
HUMAN ENDOTHELIAL-CELLS; NF-KAPPA-B; WIDE EXPRESSION PROFILES; GENE-EXPRESSION; BIOLOGICAL NETWORKS; PROTEIN EXPRESSION; MICROARRAY; BIOINFORMATICS; MECHANISMS; PATHWAYS;
D O I
10.1186/1471-2105-14-340
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Gene expression profiling and other genome-scale measurement technologies provide comprehensive information about molecular changes resulting from a chemical or genetic perturbation, or disease state. A critical challenge is the development of methods to interpret these large-scale data sets to identify specific biological mechanisms that can provide experimentally verifiable hypotheses and lead to the understanding of disease and drug action. Results: We present a detailed description of Reverse Causal Reasoning (RCR), a reverse engineering methodology to infer mechanistic hypotheses from molecular profiling data. This methodology requires prior knowledge in the form of small networks that causally link a key upstream controller node representing a biological mechanism to downstream measurable quantities. These small directed networks are generated from a knowledge base of literature-curated qualitative biological cause-and-effect relationships expressed as a network. The small mechanism networks are evaluated as hypotheses to explain observed differential measurements. We provide a simple implementation of this methodology, Whistle, specifically geared towards the analysis of gene expression data and using prior knowledge expressed in Biological Expression Language (BEL). We present the Whistle analyses for three transcriptomic data sets using a publically available knowledge base. The mechanisms inferred by Whistle are consistent with the expected biology for each data set. Conclusions: Reverse Causal Reasoning yields mechanistic insights to the interpretation of gene expression profiling data that are distinct from and complementary to the results of analyses using ontology or pathway gene sets. This reverse engineering algorithm provides an evidence-driven approach to the development of models of disease, drug action, and drug toxicity.
引用
收藏
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 2005, BIOINFORMATICS COMPU
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Causal reasoning on biological networks: interpreting transcriptional changes [J].
Chindelevitch, Leonid ;
Ziemek, Daniel ;
Enayetallah, Ahmed ;
Randhawa, Ranjit ;
Sidders, Ben ;
Brockel, Christoph ;
Huang, Enoch S. .
BIOINFORMATICS, 2012, 28 (08) :1114-1121
[4]   The PI3K Pathway As Drug Target in Human Cancer [J].
Courtney, Kevin D. ;
Corcoran, Ryan B. ;
Engelman, Jeffrey A. .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (06) :1075-1083
[5]   GeneSigDB-a curated database of gene expression signatures [J].
Culhane, Aedin C. ;
Schwarzl, Thomas ;
Sultana, Razvan ;
Picard, Kermshlise C. ;
Picard, Shaita C. ;
Lu, Tim H. ;
Franklin, Katherine R. ;
French, Simon J. ;
Papenhausen, Gerald ;
Correll, Mick ;
Quackenbush, John .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D716-D725
[6]   Comparative Transcriptional Network Modeling of Three PPAR-α/γ Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes [J].
Deehan, Renee ;
Maerz-Weiss, Pia ;
Catlett, Natalie L. ;
Steiner, Guido ;
Wong, Ben ;
Wright, Matthew B. ;
Blander, Gil ;
Elliston, Keith O. ;
Ladd, William ;
Bobadilla, Maria ;
Mizrahi, Jacques ;
Haefliger, Carolina ;
Edgar, Alan .
PLOS ONE, 2012, 7 (04)
[7]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[8]   How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes [J].
Guo, Yanfang ;
Xiao, Peng ;
Lei, Shufeng ;
Deng, Feiyan ;
Xiao, Gary Guishan ;
Liu, Yaozhong ;
Chen, Xiangding ;
Li, Liming ;
Wu, Shan ;
Chen, Yuan ;
Jiang, Hui ;
Tan, Lijun ;
Xie, Jingyun ;
Zhu, Xuezhen ;
Liang, Songping ;
Deng, Hongwen .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2008, 40 (05) :426-436
[9]   Nuclear Export-independent Inhibition of Foxa2 by Insulin [J].
Howell, Jessica J. ;
Stoffel, Markus .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (37) :24816-24824
[10]   Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (01) :1-13