Modeling and decoding motor cortical activity using a switching Kalman filter

被引:148
作者
Wu, W [1 ]
Black, MJ
Mumford, D
Gao, Y
Bienenstock, E
Donoghue, JP
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[3] Brown Univ, Dept Neurosci, Providence, RI 02912 USA
关键词
mixture model; motor cortex; neural decoding; neural prosthesis; switching Kalman filter;
D O I
10.1109/TBME.2004.826666
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a switching Kalman filter model for the real-time inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A "hidden state" models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the non-Gaussian nature of firing rates, and can cope with crudely sorted neural data common in on-line prosthetic applications.
引用
收藏
页码:933 / 942
页数:10
相关论文
共 36 条
[1]  
[Anonymous], CRGTR963 U TOR DEP C
[2]  
[Anonymous], 1974, APPL OPTIMAL ESTIMAT
[3]  
[Anonymous], 2002, P SAB WORKSH MOT CON
[4]  
[Anonymous], 1998, 9810 COMP CAMBR RES
[5]  
Bishop C. M., 1996, Neural networks for pattern recognition
[6]   Mixture Kalman filters [J].
Chen, R ;
Liu, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :493-508
[7]   RELATIONS OF MOTOR CORTEX NEURAL DISCHARGE TO KINEMATICS OF PASSIVE AND ACTIVE ELBOW MOVEMENTS IN THE MONKEY [J].
FLAMENT, D ;
HORE, J .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (04) :1268-1284
[8]  
Gao Y, 2003, I IEEE EMBS C NEUR E, P189
[9]  
Gao Y, 2002, ADV NEUR IN, V14, P213
[10]  
GEORGOPOULOS AP, 1988, J NEUROSCI, V8, P2928