Stochastic Maximum Principle for Optimal Control of SPDEs

被引:54
作者
Fuhrman, Marco [1 ]
Hu, Ying [2 ]
Tessitore, Gianmario [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
Stochastic maximum principle; Stochastic partial differential equation; Optimal control; Adjoint process; DIFFERENTIAL-EQUATIONS; RICCATI EQUATION; SYSTEMS;
D O I
10.1007/s00245-013-9203-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a stochastic partial differential equation driven by a finite dimensional Wiener process. The equation is formulated in a semi-abstract form that allows direct applications to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient dependent on the control parameter, and the space of control actions is general, so that in particular we need to introduce two adjoint processes. The second adjoint process takes values in a suitable space of operators on L (4).
引用
收藏
页码:181 / 217
页数:37
相关论文
共 19 条
[1]  
[Anonymous], 1999, APPL MATH
[2]  
[Anonymous], APPL MATH SCI
[3]   STOCHASTIC MAXIMUM PRINCIPLE FOR DISTRIBUTED PARAMETER-SYSTEMS [J].
BENSOUSSAN, A .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1983, 315 (5-6) :387-406
[4]  
Du K., PREPRINT
[5]   Stochastic maximum principle for optimal control of SPDEs [J].
Fuhrman, Marco ;
Hu, Ying ;
Tessitore, Gianmario .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (13-14) :683-688
[6]   On the backward stochastic Riccati equation in infinite dimensions [J].
Guatteri, G ;
Tessitore, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) :159-194
[7]   Stochastic maximum principle for SPDEs with noise and control on the boundary [J].
Guatteri, Giuseppina .
SYSTEMS & CONTROL LETTERS, 2011, 60 (03) :198-204
[8]  
Hu Y, 1990, STOCHASTICS STOCHAST, V33, P159
[9]  
HU Y, 1991, STOCH ANAL APPL, V9, P445, DOI DOI 10.1080/07362999108809250
[10]  
Lii Q., PREPRINT