HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms

被引:100
作者
Persico, M
Ceol, A
Gavrila, C
Hoffmann, R
Florio, A
Cesareni, G
机构
[1] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy
[2] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10021 USA
关键词
D O I
10.1186/1471-2105-6-S4-S21
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The application of high throughput approaches to the identification of protein interactions has offered for the first time a glimpse of the global interactome of some model organisms. Until now, however, such genome-wide approaches have not been applied to the human proteome. Results: In order to fill this gap we have assembled an inferred human protein interaction network where interactions discovered in model organisms are mapped onto the corresponding human orthologs. In addition to a stringent assignment to orthology classes based on the InParanoid algorithm, we have implemented a string matching algorithm to filter out orthology assignments of proteins whose global domain organization is not conserved. Finally, we have assessed the accuracy of our own, and related, inferred networks by benchmarking them against i) an assembled experimental interactome, ii) a network derived by mining of the scientific literature and iii) by measuring the enrichment of interacting protein pairs sharing common Gene Ontology annotation. Conclusion: The resulting networks are named HomoMINT and HomoMINT_filtered, the latter being based on the orthology table filtered by the domain architecture matching algorithm. They contains 9749 and 5203 interactions respectively and can be analyzed and viewed in the context of the experimentally verified interactions between human proteins stored in the MINT database. HomoMINT is constantly updated to take into account the growing information in the MINT database.
引用
收藏
页数:12
相关论文
共 42 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
[3]   Analyzing yeast protein-protein interaction data obtained from different sources [J].
Bader, GD ;
Hogue, CWV .
NATURE BIOTECHNOLOGY, 2002, 20 (10) :991-997
[4]   The ENZYME database in 2000 [J].
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :304-305
[5]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]   Prolinks: a database of protein functional linkages derived from coevolution [J].
Bowers, PM ;
Pellegrini, M ;
Thompson, MJ ;
Fierro, J ;
Yeates, TO ;
Eisenberg, D .
GENOME BIOLOGY, 2004, 5 (05)
[8]   Osprey: a network visualization system [J].
Breitkreutz, BJ ;
Stark, C ;
Tyers, M .
GENOME BIOLOGY, 2003, 4 (03)
[9]   Online predicted human interaction database [J].
Brown, KR ;
Jurisica, I .
BIOINFORMATICS, 2005, 21 (09) :2076-2082
[10]   Interaction network containing conserved and essential protein complexes in Escherichia coli [J].
Butland, G ;
Peregrín-Alvarez, JM ;
Li, J ;
Yang, WH ;
Yang, XC ;
Canadien, V ;
Starostine, A ;
Richards, D ;
Beattie, B ;
Krogan, N ;
Davey, M ;
Parkinson, J ;
Greenblatt, J ;
Emili, A .
NATURE, 2005, 433 (7025) :531-537