This paper reports development of a production method to produce a composite material that is biocompatible, with high mechanical strength and resilience. The chemical precipitation conditions necessary for the production of synthetic hydroxyapatite (HAp) were determined and include pH, temperature and rate of reaction. A gas phase purification method was optimised to remove the soot impurity from the nanotubes, with transmission electron microscopy showing the preservation of the carbon nanotubes. Subsequent development of chemical and physical reinforcement techniques to produce a HAp + carbon nanotube composite material have been trialled. Hot isostatically pressed samples showed excellent densification and strength.