Quasi-hexagonal Cu1.5Mn1.5O4 nanoplates decorated on hollow CuO by Kirkendall effect for enhancing lithium storage performance

被引:10
作者
Liu, Peng [1 ]
Xia, Xifeng [1 ]
Lei, Wu [1 ]
Jiao, Xinyan [1 ]
Lu, Lei [1 ]
Ouyang, Yu [1 ]
Hao, Qingli [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous composite; Kirkendall effect; Nanoplates; Voids; Enhanced performance; LI-ION BATTERIES; ANODE MATERIALS; ELECTRODE MATERIALS; FACILE SYNTHESIS; SPHERES; HETEROSTRUCTURES; NANOSTRUCTURES; NANOCRYSTALS; FABRICATION; OXIDATION;
D O I
10.1016/j.apsusc.2018.03.191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing a hierarchical heterogeneous composite is deemed as an effective way to solve the current problems of metal oxides as lithium ion batteries' anodes. In this work, we simultaneously designed the heterogeneous component and structure of the novel hybrid based on Kirkendall effect. The composite was composed of quasi-hexagonal Cu1.5Mn1.5O4 nanoplates as a shell and CuO with voids as a core. The hybrids were characterized by using XRD, FTIR, TEM and SEM. It was found that the heating rate greatly influences the combination form of Cu1.5Mn1.5O4 and CuO. The quasi-hexagonal Cu1.5Mn1.5O4 nanoplates were assembled into branch-like shell decorated on the CuO surface under the low heating rate. However, the high heating rate led to a compact Cu1.5Mn1.5O4 shell, although the shell was also assembled by quasi-hexagonal nanoplates. The reasonable formation mechanism of the unique component and structure was proposed. Such a hybrid with the branch-like shell exhibited the best lithium storage performance. The improved electrochemical performance can be attributed to the unique component and structure. Typically, the inside voids can alleviate the volume change and the hierarchical shell can provide much contact and reaction sites. This work not only opens a new view in constructing heterogeneous hybrid with unique structure by Kirkendall effect, but also can be expanded for many other structure-based applications, such as energy storage, sensors, and heterogeneous catalysts. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 40 条
[1]   Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange [J].
Anderson, Bryan D. ;
Tracy, Joseph B. .
NANOSCALE, 2014, 6 (21) :12195-12216
[2]   IONIC ORDER AND CATION VALENCIES IN SPINELS CU1.5MN1.5O4 AND CUGAMNO4 [J].
BRABERS, VAM ;
VANDENBERGHE, RE .
PHYSICS LETTERS A, 1973, A 44 (07) :493-494
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   Reconstruction of Mini-Hollow Polyhedron Mn2O3 Derived from MOFs as a High-Performance Lithium Anode Material [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Xu, Hang ;
Liu, Huiqiao ;
Kang, Hongyan ;
Zhao, Yan ;
Liu, Yongchang ;
Wang, Yijing ;
Yuan, Huatang .
ADVANCED SCIENCE, 2016, 3 (03)
[5]   1-D nanostructure comprising porous Fe2O3/Se composite nanorods with numerous nanovoids, and their electrochemical properties for use in lithium-ion batteries [J].
Cho, Jung Sang ;
Park, Jin-Sung ;
Jeon, Kyung Min ;
Kang, Yun Chan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) :10632-10639
[6]   Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries [J].
Cho, Jung Sang ;
Park, Jin-Sung ;
Kang, Yun Chan .
NANO RESEARCH, 2017, 10 (03) :897-907
[7]   Preparation and characterization of CoO used as anodic material of lithium battery [J].
Do, JS ;
Weng, CH .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :482-486
[8]   Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors [J].
Dubal, Deepak P. ;
Gund, Girish S. ;
Holze, Rudolf ;
Jadhav, Harsharaj S. ;
Lokhande, Chandrakant D. ;
Park, Chan-Jin .
DALTON TRANSACTIONS, 2013, 42 (18) :6459-6467
[9]   Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J].
Fan, Hong Jin ;
Knez, Mato ;
Scholz, Roland ;
Nielsch, Kornelius ;
Pippel, Eckhard ;
Hesse, Dietrich ;
Zacharias, Margit ;
Goesele, Ulrich .
NATURE MATERIALS, 2006, 5 (08) :627-631
[10]   Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage [J].
Guo, Wenxiang ;
Sun, Weiwei ;
Wang, Yong .
ACS NANO, 2015, 9 (11) :11462-11471