Blaschke's rolling theorem for manifolds with boundary

被引:18
作者
Howard, R [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1007/s002290050186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete Riemannian manifold M with compact boundary partial derivative M denote by C-partial derivative M the cut locus of partial derivative M in M. The rolling radius of M is Roll(M) := dist(partial derivative M, C-partial derivative M). Let Focal(partial derivative M) be the focal distance of partial derivative M in M. Then conditions are given that imply the equality Roll(M) = Focal(partial derivative M). This generalizes Blaschke's rolling theorem from bounded convex domains in Euclidean space to more general Euclidean domains and to Riemannian manifolds with boundary.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 25 条