Symmetries on almost symmetric numerical semigroups

被引:40
作者
Nari, Hirokatsu [1 ]
机构
[1] Nihon Univ, Grad Sch Integrated Basic Sci, Setagaya Ku, Tokyo 1560045, Japan
关键词
Numerical semigroup; Almost symmetric numerical semigroup; Dual of maximal ideal; Gluing of numerical semigroups; MODULAR DIOPHANTINE INEQUALITIES;
D O I
10.1007/s00233-012-9397-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of an almost symmetric numerical semigroup was given by V. Barucci and R. Froberg in J. Algebra, 188, 418-442 (1997). We characterize almost symmetric numerical semigroups by symmetry of pseudo-Frobenius numbers. We give a criterion for H (au) (the dual of M) to be an almost symmetric numerical semigroup. Using these results we give a formula for the multiplicity of an opened modular numerical semigroup. Finally, we show that if H (1) or H (2) is not symmetric, then the gluing of H (1) and H (2) is not almost symmetric.
引用
收藏
页码:140 / 154
页数:15
相关论文
共 11 条
  • [1] One-dimensional almost Gorenstein rings
    Barucci, V
    Froberg, R
    [J]. JOURNAL OF ALGEBRA, 1997, 188 (02) : 418 - 442
  • [2] Barucci V., 1997, Memoirs American Mathematical Society, V598
  • [3] Barucci V., 2009, COMMUTATIVE ALGEBRA, P49
  • [4] Delgado M., 2006, Portugaliae Mathematica, V63, P415
  • [5] DELORME C, 1976, ANN SCI ECOLE NORM S, V9, P145
  • [6] Genus of numerical semigroups generated by three elements
    Nari, Hirokatsu
    Numata, Takahiro
    Watanabe, Kei-ichi
    [J]. JOURNAL OF ALGEBRA, 2012, 358 : 67 - 73
  • [7] The set of solutions of a proportionally modular Diophantine inequality
    Rosales, J. C.
    Garcia-Sanchez, P. A.
    Urbano-Blanco, J. M.
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (03) : 453 - 467
  • [8] Opened modular numerical semigroups
    Rosales, J. C.
    Urbano-Blanco, J. M.
    [J]. JOURNAL OF ALGEBRA, 2006, 306 (02) : 368 - 377
  • [9] Rosales J.C., 2009, SPRINGER DEV MATH, V20
  • [10] Modular diophantine inequalities and numerical semigroups
    Rosales, JC
    García-Sánchez, PA
    Urbano-Blanco, JM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2005, 218 (02) : 379 - 398