A generalization of the unit and unitary Cayley graphs of a commutative ring

被引:28
作者
Khashyarmanesh, K. [1 ]
Khorsandi, M. R. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
关键词
unit graph; unitary Cayley graph; Cayley sum graph; diameter; girth; planarity;
D O I
10.1007/s10474-012-0224-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with non-zero identity and G be a multiplicative subgroup of U(R), where U(R) is the multiplicative group of unit elements of R. Also, suppose that S is a non-empty subset of G such that S (-1) = {s(-1) vertical bar s is an element of S} subset of S. Then we define Gamma(R, G, S) to be the graph with vertex set R and two distinct elements x, y is an element of R are adjacent if and only if there exists s is an element of S such that x + sy is an element of G. This graph provides a generalization of the unit and unitary Cayley graphs. In fact, Gamma(R, U(R), S) is the unit graph or the unitary Cayley graph, whenever S = {1} or S = {-1}, respectively. In this paper, we study the properties of the graph Gamma(R, G, S) and extend some results in the unit and unitary Cayley graphs.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 14 条
[1]  
Akhtar R, 2009, ELECTRON J COMB, V16
[2]   The total graph of a commutative ring [J].
Anderson, David F. ;
Badawi, Ayman .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2706-2719
[3]  
[Anonymous], 2001, Introduction to Graph Theory
[4]   UNIT GRAPHS ASSOCIATED WITH RINGS [J].
Ashrafi, N. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2851-2871
[5]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[6]  
Baba K., 2010, SCI MATH JPN, V71, P187
[7]  
Cheyne B., 2003, ROSE HULMAN UNDERGRA, V1
[8]   Rings of order p5 part I.: Nonlocal rings [J].
Corbas, B ;
Williams, GD .
JOURNAL OF ALGEBRA, 2000, 231 (02) :677-690
[9]  
Diestel R., 2005, GRAPH THEORY, VThird
[10]  
Godsil C., 2001, Algebraic graph theory