Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties

被引:146
作者
Smalls, LK
Wickett, RR
Visscher, MO
机构
[1] Childrens Hosp Res Fdn, Skin Sci Inst, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Coll Pharm, Cincinnati, OH 45267 USA
关键词
skin; biomechanical properties; elasticity; stiffness; elastic deformation; dermal thickness; tissue composition; instrumental methods;
D O I
10.1111/j.0909-725X.2006.00135.x
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background/Purpose: Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. Methods: We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer((R)) SEM 575 Skin Elasticity Meter((R)), to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Results: Skin thickness was significantly correlated with stiffness, energy absorption, and U-r/U-f for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P < 0.05, one-way ANOVA). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U-r, U-f, and U-r/U-f and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U-r/U-f, elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption (tissue softness, compliance) compared with the left side. A significant (P <= 0.02) negative relationship with age was seen for all biomechanical measures except stiffness at the shoulder. For the thigh and calf sites, significant negative correlations with age were found for elasticity %, U-r, and U-r/U-f. Age and skin thickness were not correlated in this population. Skin thickness and age influenced the energy absorption at the shoulder site. The biological elasticity at the calf site could be predicted by age and BMI. The biological activity at the thigh site could be predicted by skin thickness and BMI. Conclusions: Significant regional variations in biomechanical properties and dominant side effects were observed. The biomechanical properties were significantly influenced by age. Certain properties varied with dermal thickness and tissue composition. The parameters were well correlated between the two instruments. The Cutometer,((R)) with its smaller aperture, was found to be more sensitive to age relationships.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 32 条
[1]   Visceral and central abdominal fat and anthropometry in relation to diabetes in Asian Indians [J].
Anjana, M ;
Sandeep, S ;
Deepa, R ;
Vimaleswaran, KS ;
Farooq, S ;
Mohan, V .
DIABETES CARE, 2004, 27 (12) :2948-2953
[2]   Non-invasive measurement of biomechanical skin properties in systemic sclerosis [J].
Balbir-Gurman, A ;
Denton, CP ;
Nichols, B ;
Knight, CJ ;
Nahir, AM ;
Martin, G ;
Black, CM .
ANNALS OF THE RHEUMATIC DISEASES, 2002, 61 (03) :237-241
[3]  
BALIN AK, 1989, CUTIS, V43, P431
[4]  
Barel AO, 1995, HDB NONINVASIVE METH
[5]   ELASTIC PROPERTIES OF HUMAN SKIN - RELATION TO AGE, SEX, AND ANATOMICAL REGION [J].
CUA, AB ;
WILHELM, KP ;
MAIBACH, HI .
ARCHIVES OF DERMATOLOGICAL RESEARCH, 1990, 282 (05) :283-288
[6]  
Dobke Marek K, 2002, Aesthet Surg J, V22, P260, DOI 10.1067/maj.2002.124711
[7]   MECHANICAL-PROPERTIES OF HUMAN FOREARM AND VULVAR SKIN [J].
ELSNER, P ;
WILHELM, D ;
MAIBACH, HI .
BRITISH JOURNAL OF DERMATOLOGY, 1990, 122 (05) :607-614
[8]   AGE-RELATED MECHANICAL-PROPERTIES OF HUMAN-SKIN - AN INVIVO STUDY [J].
ESCOFFIER, C ;
DERIGAL, J ;
ROCHEFORT, A ;
VASSELET, R ;
LEVEQUE, JL ;
AGACHE, PG .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1989, 93 (03) :353-357
[9]  
GNIADECKA M, 1995, HDB NONINVASIVE METH
[10]   Standardized qualitative evaluation of scar tissue properties in an animal wound healing model [J].
Hollander, DA ;
Erli, HJ ;
Theisen, A ;
Falk, S ;
Kreck, T ;
Müller, S .
WOUND REPAIR AND REGENERATION, 2003, 11 (02) :150-157