Numerical Solution of Two Dimensional Nonlinear Fuzzy Fredholm Integral Equations of Second Kind Using Hybrid of Block-Pulse Functions and Bernstein Polynomials

被引:2
作者
Mahaleh, Vahid Samadpour Khalifeh [1 ]
Ezzati, Reza [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
关键词
Nonlinear fuzzy Fredholm integral equation; hybrid; block-pulse function; Bernstein polynomial; APPROXIMATION;
D O I
10.2298/FIL1814923M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first, we introduce a successive approximation method in terms of a combination of Bernstein polynomials and block-pulse functions. The proposed method is given for solving two dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Then, we present the convergence of the proposed method. Also we investigate the numerical stability of the method with respect to the choice of the first iteration. Finally, two numerical examples are presented to show the accuracy of the method.
引用
收藏
页码:4923 / 4935
页数:13
相关论文
共 25 条
[1]  
Anastassiou G., 2001, J. Fuzzy Math, V9, P701
[2]  
[Anonymous], 2010, FUZZY MATH APPROXIMA
[3]  
Baghmisheh M., 2015, ADV DIFFER EQU-NY, V5, P22
[4]  
Balachandran K., 2005, J APPL MATH STOCH AN, V3, P333
[5]   Quadrature rules for integrals of fuzzy-number-valued functions [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2004, 145 (03) :359-380
[6]   Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations [J].
Bica, Alexandru Mihai .
INFORMATION SCIENCES, 2008, 178 (05) :1279-1292
[7]   Approximating the solution of nonlinear Hammerstein fuzzy integral equations [J].
Bica, Alexandru Mihai ;
Popescu, Constantin .
FUZZY SETS AND SYSTEMS, 2014, 245 :1-17
[8]   Numerical solutions of the nonlinear fuzzy Hammerstein-Volterra delay integral equations [J].
Bica, Alexandru Mihai ;
Popescu, Constantin .
INFORMATION SCIENCES, 2013, 223 :236-255
[9]   Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method [J].
Ezzati, R. ;
Ziari, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :33-42
[10]  
Ezzati R, 2013, INT J FUZZY SYST, V15, P84